National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
Department of Neurosurgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
J Mater Chem B. 2022 Aug 24;10(33):6315-6327. doi: 10.1039/d2tb01111e.
Spontaneous recovery after spinal cord injury (SCI) is extremely limited since the severe inflammatory responses lead to secondary damage, and the diseased extracellular matrix (ECM) fails to provide inductive cues for nerve regeneration. To address these dilemmas, herein, we propose a biomaterial-based strategy combining neuroprotection and neuroinduction for SCI repair. Taking advantage of a microfluidic chip, we constructed imine-crosslinked aldehyde-methacrylate-hyaluronan/collagen hybrid hydrogel microfibers incorporating interleukin 4 (IL-4)-loaded ZIF-8 nanoparticles (IL4@ZIF-8 NPs). The hybrid hydrogel microfibers possess pivotal traits mimicking the natural ECM and hold neuroinductive nanoalignment and viscoelasticity, as well as the acidic microenvironment-responsive release of neuroprotective IL-4. Then, we elucidated the role of the tailored hydrogel microfibers in promoting the structural and functional recovery of SCI rats. The implanted hydrogel microfibers incorporating IL4@ZIF-8 NPs protected endogenous neural cells by promoting M2 polarization of recruited macrophages and suppressing inflammation. Additionally, the hydrogel microfibers enhanced neuronal differentiation, accelerated axonal regrowth, synapse formation and remyelination, resulting from their ECM-mimicking oriented nano-topography and viscoelasticity. Moreover, the locomotor function was also improved by the implanted microfibers combining neuroprotective cues and neuroinductive cues. This work not only paves the steps for the development of a novel class of multifunctional hydrogels that manipulate tissue behavior by modifying the cellular microenvironment but also provides intriguing insights for the repair of SCI and even other central nervous system (CNS) injuries tissue engineering approaches.
脊髓损伤 (SCI) 后的自发恢复极其有限,因为严重的炎症反应会导致继发性损伤,病变的细胞外基质 (ECM) 无法为神经再生提供诱导线索。为了解决这些困境,我们在此提出了一种基于生物材料的策略,将神经保护和神经诱导结合起来用于 SCI 修复。我们利用微流控芯片构建了亚胺交联的醛基-甲基丙烯酰基-透明质酸/胶原杂化水凝胶微纤维,其中包含负载白细胞介素 4 (IL-4) 的沸石咪唑酯骨架 8 (ZIF-8) 纳米粒子 (IL4@ZIF-8 NPs)。杂化水凝胶微纤维具有模仿天然 ECM 的关键特性,具有神经诱导的纳米级取向和粘弹性,以及响应酸性微环境的神经保护 IL-4 的释放。然后,我们阐明了定制水凝胶微纤维在促进 SCI 大鼠结构和功能恢复中的作用。植入的包含 IL4@ZIF-8 NPs 的水凝胶微纤维通过促进募集的巨噬细胞的 M2 极化和抑制炎症来保护内源性神经细胞。此外,水凝胶微纤维通过模仿 ECM 的取向纳米形貌和粘弹性,增强了神经元分化,加速了轴突再生、突触形成和髓鞘形成,从而提高了运动功能。此外,植入的结合了神经保护和神经诱导线索的微纤维也改善了运动功能。这项工作不仅为开发通过改变细胞微环境来操纵组织行为的新型多功能水凝胶铺平了道路,也为 SCI 甚至其他中枢神经系统 (CNS) 损伤的修复提供了有趣的思路,为组织工程方法提供了思路。