School of Materials and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 96064, United States.
ACS Appl Bio Mater. 2022 Aug 15;5(8):3912-3922. doi: 10.1021/acsabm.2c00439. Epub 2022 Aug 3.
Bacterial infections are a serious threat to human health, and the development of effective antibacterial agents represents a critical solution. In this study, NH-MIL-101(Fe)@MoS/ZnO ternary nanocomposites are successfully prepared by a facile wet-chemistry procedure, where MoS nanosheets are grown onto the MIL-101 scaffold forming a flower-like morphology with ZnO nanoparticles deposited onto the surface. The ternary composites exhibit a remarkable sterilization performance under visible light irradiation toward both Gram-negative and Gram-positive bacteria, eliminating 98.6% of and 90% of after exposure to visible light for 30 min, a performance markedly better than that with NH-MIL-101(Fe)@MoS binary composites and even more so than MoS nanosheets alone. This is ascribed to the unique electronic band structure of the composites, where the separation of the photogenerated carriers is likely facilitated by the S-scheme mechanism in the NH-MIL-101(Fe)@MoS binary composites and further enhanced by the formation of a p-n heterojunction between MoS and ZnO in the ternary composites. This interfacial charge transfer boosts the effective production of superoxide radicals by the reduction of oxygen, and the disproportionation reaction with water leads to the formation of hydroxy radicals, as attested in spectroscopic and microscopic measurements. Results from this study highlight the significance of structural engineering of nanocomposites in the manipulation of the electronic band structure and hence the photodynamic activity.
细菌感染对人类健康构成严重威胁,而开发有效的抗菌剂是解决这一问题的关键。在这项研究中,通过一种简便的湿化学程序成功制备了 NH-MIL-101(Fe)@MoS/ZnO 三元纳米复合材料,其中 MoS 纳米片生长在 MIL-101 支架上,形成具有 ZnO 纳米颗粒沉积在表面的花状形态。三元复合材料在可见光照射下对革兰氏阴性菌和革兰氏阳性菌均表现出显著的杀菌性能,暴露于可见光 30 分钟后,对 和 的杀灭率分别达到 98.6%和 90%,性能明显优于 NH-MIL-101(Fe)@MoS 二元复合材料,甚至优于单独的 MoS 纳米片。这归因于复合材料独特的电子能带结构,其中光生载流子的分离可能得益于 NH-MIL-101(Fe)@MoS 二元复合材料中的 S 型机制,并且在三元复合材料中 MoS 和 ZnO 之间形成 p-n 异质结进一步得到增强。这种界面电荷转移促进了超氧自由基的有效产生,通过还原氧气和水的歧化反应形成羟基自由基,这在光谱和微观测量中得到了证实。这项研究的结果强调了纳米复合材料结构工程在操纵电子能带结构从而影响光动力活性方面的重要性。