Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar 34320, Istanbul, Turkey.
Bioorg Chem. 2022 Nov;128:106045. doi: 10.1016/j.bioorg.2022.106045. Epub 2022 Jul 21.
The development of new antimicrobial agents is necessary to overcome the emerging antimicrobial resistance among infectious microbial pathogens. Herein, we successfully designed and synthesized quinolinequinones (QQs) with N-phenylpiperazine (QQ1-7) containing strong or weak EDG in the amino moiety by converting hydroxyquinoline (HQ) to the dichloroquinolinequinone (QQ) via chlorooxidation. We performed an extensive antimicrobial activity assessment of the QQs with N-phenylpiperazine (QQ1-7). Among the seven quinolinequinones (QQs) with N-phenylpiperazine tested, QQ3 and QQ4 were the most active molecules against Staphylococcus aureus (ATCC® 29213) with a MIC value of 1.22 μg/mL. In addition to this, while QQ4 was more than six (6) times more effective towards Enterococcus faecalis (ATCC® 29212), QQ3 was twenty-six (26) times more effective against same strain. Furthermore, the evaluation of antimicrobial activity indicated that six of seven synthesized QQs (QQ1-4, QQ6, and QQ7) exhibited superior biological potency, eight (8) times for five of them (QQ1-4 and QQ6) and two (2) times for QQ7, against Staphylococcus epidermidis (ATCC® 12228). Besides, all QQs except QQ5 displayed excellent antifungal activity against the fungi Candida albicans (ATCC® 10231). Among these, the two QQs (QQ3 and QQ4), which showed the lowest values against gram-positive bacterial strains (Staphylococcus aureus (ATCC® 29213), Staphylococcus epidermidis (ATCC® 12228), and Enterococcus faecalis (ATCC® 29212)) as well as fungal strains (Candida albicans (ATCC® 10231) and Candida parapsilosis (ATCC® 22019)), were further evaluated for their biofilm inhibition properties and their mode of action with in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of gram-positive bacteria, and bactericidal activity using time-kill curve assay. In this study, we investigated the bactericidal effects of QQ3 against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans strains. The findings of this study suggest that a significant bactericidal effect was seen with all tested 1 × MIC and 4 × MIC concentrations used within 24 h. Our findings present significant implications for an antimicrobial drug candidate for treating infections, especially those caused by clinically resistant MRSA isolates.
新的抗菌药物的开发对于克服传染性微生物病原体中出现的抗菌药物耐药性是必要的。在此,我们通过将羟基喹啉(HQ)转化为二氯喹啉醌(QQ),通过氯氧化成功设计并合成了具有氨基中强或弱 EDG 的含 N-苯基哌嗪的喹啉醌(QQ1-7)。我们对含 N-苯基哌嗪的喹啉醌(QQ1-7)进行了广泛的抗菌活性评估。在所测试的七种含 N-苯基哌嗪的喹啉醌(QQs)中,QQ3 和 QQ4 对金黄色葡萄球菌(ATCC®29213)的活性最强,MIC 值为 1.22μg/mL。除此之外,虽然 QQ4 对粪肠球菌(ATCC®29212)的活性强于 6 倍,但 QQ3 对同株的活性强于 26 倍。此外,抗菌活性评估表明,七种合成 QQs 中有六种(QQ1-4、QQ6 和 QQ7)表现出更高的生物学效力,其中五种(QQ1-4 和 QQ6)的效力高 8 倍,而 QQ7 的效力高 2 倍,对表皮葡萄球菌(ATCC®12228)具有活性。此外,除 QQ5 外,所有 QQs 对真菌白色念珠菌(ATCC®10231)均显示出优异的抗真菌活性。在这些 QQs 中,两种对革兰氏阳性菌(金黄色葡萄球菌(ATCC®29213)、表皮葡萄球菌(ATCC®12228)和粪肠球菌(ATCC®29212))和真菌(白色念珠菌(ATCC®10231)和近平滑念珠菌(ATCC®22019))菌株的最低值表现出最低值的 QQs(QQ3 和 QQ4),进一步评估了它们的生物膜抑制特性和它们在体外对 20 株临床获得的耐革兰氏阳性菌的潜在抗菌活性的作用方式,以及使用时间杀伤曲线测定的杀菌活性。在这项研究中,我们研究了 QQ3 对耐甲氧西林金黄色葡萄球菌(MRSA)和白色念珠菌菌株的杀菌作用。研究结果表明,在 24 小时内使用所有测试的 1×MIC 和 4×MIC 浓度均观察到显著的杀菌作用。我们的研究结果对治疗感染,特别是由临床耐药 MRSA 分离株引起的感染的抗菌药物候选药物具有重要意义。