Suppr超能文献

异常的铁分布通过肝细胞-星状细胞轴驱动肝脏脂肪生成和纤维化。

Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis.

机构信息

Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.

Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.

出版信息

Cell Metab. 2022 Aug 2;34(8):1201-1213.e5. doi: 10.1016/j.cmet.2022.07.006.

Abstract

Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.

摘要

肝细胞在肝脏铁稳态中起着重要作用,其异常与肝脂肪变性和纤维化密切相关。在这里,我们表明非酒精性脂肪性肝病 (NAFLD) 和脂肪性肝炎 (NASH) 的特征是铁缺乏的肝细胞和肝星状细胞 (HSCs) 中的铁过载。铁缺乏通过 HIF2α-ATF4 信号增强肝细胞的脂生成和胰岛素抵抗。含铁的肝细胞细胞外囊泡 (EVs) 的分泌增加,这些 EVs 通常被枯否细胞清除,导致 NAFLD/NASH 肝脏中的肝细胞铁缺乏和 HSC 铁过载。铁积累导致活性氧的过度产生,从而促进 HSC 纤维生成激活。相反,阻断肝细胞 EV 分泌或耗尽 EV 铁载体能恢复肝脏铁稳态,同时减轻与 NAFLD/NASH 相关的肝脂肪变性和纤维化。总之,这些研究表明,铁分布紊乱导致肝脏代谢性疾病的发展。

相似文献

1
Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis.
Cell Metab. 2022 Aug 2;34(8):1201-1213.e5. doi: 10.1016/j.cmet.2022.07.006.
2
Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation.
J Hepatol. 2020 Oct;73(4):896-905. doi: 10.1016/j.jhep.2020.04.037. Epub 2020 May 4.
3
Extracellular Vesicles in the Development of the Non-Alcoholic Fatty Liver Disease: An Update.
Biomolecules. 2020 Oct 30;10(11):1494. doi: 10.3390/biom10111494.
4
Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD).
Int J Mol Sci. 2022 Jun 23;23(13):6996. doi: 10.3390/ijms23136996.
5
Iron overload in nonalcoholic steatohepatitis.
Adv Clin Chem. 2011;55:105-32. doi: 10.1016/b978-0-12-387042-1.00006-x.
7
Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease.
Arch Pharm Res. 2019 Nov;42(11):935-946. doi: 10.1007/s12272-019-01178-1. Epub 2019 Sep 30.
8
Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease.
Gut. 2015 Jun;64(6):973-81. doi: 10.1136/gutjnl-2014-306968. Epub 2014 Jul 10.
9
Analysis of the Role of Stellate Cell VCAM-1 in NASH Models in Mice.
Int J Mol Sci. 2023 Mar 2;24(5):4813. doi: 10.3390/ijms24054813.
10
Microbial DNA enrichment promotes liver steatosis and fibrosis in the course of non-alcoholic steatohepatitis.
Acta Physiol (Oxf). 2022 Jul;235(3):e13827. doi: 10.1111/apha.13827. Epub 2022 May 10.

引用本文的文献

3
Melatonin Prevents the Progression of MASLD via Inhibiting FFAs-Induced Ferroptosis through KEAP1/NRF2/HO-1 Pathway.
Biomol Ther (Seoul). 2025 Sep 1;33(5):876-889. doi: 10.4062/biomolther.2025.037. Epub 2025 Aug 18.
5
Dynamic crosstalk between HSCs and liver microenvironment: multicellular interactions in the regulation of liver fibrosis.
Front Cell Dev Biol. 2025 Jul 21;13:1635763. doi: 10.3389/fcell.2025.1635763. eCollection 2025.
6
Ferroptosis and gut microbiota: A new horizon in alcohol-associated liver disease management.
Cell Mol Life Sci. 2025 Jul 19;82(1):282. doi: 10.1007/s00018-025-05815-5.
7
8
Communication initiated by hepatocytes: The driver of HSC activation and liver fibrosis.
Hepatol Commun. 2025 Jul 14;9(8). doi: 10.1097/HC9.0000000000000753. eCollection 2025 Aug 1.
9
Iron and Liver Disease.
Adv Exp Med Biol. 2025;1480:237-252. doi: 10.1007/978-3-031-92033-2_16.

本文引用的文献

1
Exosomes as mediators of intercellular crosstalk in metabolism.
Cell Metab. 2021 Sep 7;33(9):1744-1762. doi: 10.1016/j.cmet.2021.08.006.
2
Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075.
Nat Metab. 2021 Sep;3(9):1163-1174. doi: 10.1038/s42255-021-00444-1. Epub 2021 Sep 6.
3
MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.
Cell Metab. 2021 Apr 6;33(4):781-790.e5. doi: 10.1016/j.cmet.2020.12.019. Epub 2021 Jan 14.
4
CRIg Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance.
Gastroenterology. 2021 Feb;160(3):863-874. doi: 10.1053/j.gastro.2020.10.042. Epub 2020 Nov 2.
5
Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis.
Immunity. 2020 Sep 15;53(3):627-640.e5. doi: 10.1016/j.immuni.2020.06.003. Epub 2020 Jun 19.
6
Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis.
Immunity. 2020 Jun 16;52(6):1057-1074.e7. doi: 10.1016/j.immuni.2020.04.001. Epub 2020 May 1.
7
The biology function and biomedical applications of exosomes.
Science. 2020 Feb 7;367(6478). doi: 10.1126/science.aau6977.
8
Liver governs adipose remodelling via extracellular vesicles in response to lipid overload.
Nat Commun. 2020 Feb 5;11(1):719. doi: 10.1038/s41467-020-14450-6.
9
The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women.
Int J Obes (Lond). 2020 Jun;44(6):1291-1300. doi: 10.1038/s41366-020-0522-x. Epub 2020 Jan 23.
10
Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export.
Dev Cell. 2019 Dec 2;51(5):575-586.e4. doi: 10.1016/j.devcel.2019.10.007. Epub 2019 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验