Samarakoon Chatura, Choi Hyung Woo, Lee Sanghyo, Fan Xiang-Bing, Shin Dong-Wook, Bang Sang Yun, Jo Jeong-Wan, Ni Limeng, Yang Jiajie, Kim Yoonwoo, Jung Sung-Min, Occhipinti Luigi G, Amaratunga Gehan A J, Kim Jong Min
Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom.
Nat Commun. 2022 Aug 3;13(1):4189. doi: 10.1038/s41467-022-31853-9.
We propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model. A theoretical maximum of 97% colour rendering index has been achieved with red, green, cyan, and blue quantum dot light-emitting diodes as primary colours. The white lighting system has been fabricated using the transfer printing technique to validate the computational design framework. It exhibits excellent lighting performance of 92% colour rendering index and wide colour temperature variation from 1612 K to 8903 K with only the four pixelated quantum dots as primary.
我们提出了一种计算设计框架,用于设计具有多个电场驱动量子点发光二极管像素化图案的白色照明系统架构。白色照明系统的量子点已通过系统级组合颜色优化过程进行了优化,其中使用Nelder-Mead算法进行机器学习。量子点图案的布局是通过使用具有电场依赖性电荷注入模型的严格器件级电荷传输模拟精确设计的。以红色、绿色、青色和蓝色量子点发光二极管作为原色,理论上实现了高达97%的显色指数。该白色照明系统已采用转移印刷技术制造,以验证该计算设计框架。它仅以四个像素化量子点作为原色,就展现出了92%的显色指数和从1612 K到8903 K的宽色温变化的出色照明性能。