Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
Front Cell Infect Microbiol. 2022 Jul 18;12:910864. doi: 10.3389/fcimb.2022.910864. eCollection 2022.
Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5' triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)-stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5.
树突状细胞 (DCs) 是微生物感染和炎症后诱导和调节适应性免疫反应的重要介质。DCs 感知包括病毒、微生物产物或炎症刺激物在内的环境危险信号,会使其从静止状态迅速转变为激活的成熟状态。DC 成熟涉及增强对主要组织相容性复合体 (MHC) 类 I 和类 II 呈递的抗原的捕获和处理,上调趋化因子及其受体、细胞因子和共刺激分子,并迁移到淋巴组织,在那里激活初始 T 细胞。协调对环境威胁的细胞反应需要很高的生物能量成本,这伴随着 DC 在激活过程中的代谢重编程。我们之前的研究表明,DC 在受到合成含有 5'三磷酸的 RNA (称为 M8) 的视黄酸诱导基因 I (RIG-I) 途径刺激后会发生显著的功能转变,包括干扰素 (IFN) 刺激的抗病毒基因上调、DC 吞噬作用增强、促炎表型激活以及与免疫原性细胞死亡相关标志物的诱导。在本研究中,我们着手确定与 M8 刺激的 RIG-I 相关的代谢变化。原发性人 DC 中的糖酵解速率响应 RIG-I 激活而增加,糖酵解重编程是 DC 激活的必要要求。单核细胞衍生的树突状细胞 (MoDCs) 中的糖酵解抑制通过破坏 TBK1-IRF3-STAT1 轴来损害 I 型 IFN 的诱导和信号转导,从而抵消 M8 诱导的抗病毒活性。功能上,受损的 IFN 反应导致登革热、冠状病毒 229E 和柯萨奇 B5 的病毒复制增强。