Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA 01854, USA.
EBioMedicine. 2021 Dec;74:103712. doi: 10.1016/j.ebiom.2021.103712. Epub 2021 Nov 25.
Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants.
We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-κB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells.
The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity.
Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro.
A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
尽管抗刺突疫苗在临床上取得了成功,但中和抗体和疫苗的有效性因 SARS-CoV-2 迅速传播的变异株而受到影响。病毒可以劫持宿主细胞的糖基化机制,使自身免受宿主免疫反应的影响,并降低抗体的效率。然而,目前尚不清楚针对病毒刺突蛋白上的糖基化是否会损害 SARS-CoV-2 及其变异株的感染力。
我们采用流式细胞术、ELISA 和生物层干涉法来评估糖基化或去糖基化的刺突与 ACE2 的结合。通过荧光素酶、免疫印迹和免疫荧光测定来确定病毒进入。全基因组关联研究(GWAS)显示 STT3A 与 COVID-19 严重程度之间存在显著关系。通过基因敲低、染色质免疫沉淀和启动子测定研究了 NF-κB/STT3A 调节的 N-糖基化。我们开发了一种抗体药物偶联物(ADC),将非中和性抗刺突抗体与 NGI-1(4G10-ADC)偶联,以特异性靶向感染 SARS-CoV-2 的细胞。
从 NCBI-Virus-database 中检索到的 57311 个刺突蛋白的受体结合域和三个不同的 SARS-CoV-2 表面 N-糖基化位点高度进化保守(99.67%),并参与 ACE2 相互作用。STT3A 是一种关键的糖基转移酶,可催化刺突糖基化,与 COVID-19 严重程度呈正相关。我们发现,使用 N-连接糖基化抑制剂-1(NGI-1)抑制 STT3A 会损害 SARS-CoV-2 及其变异株[Alpha(B.1.1.7)和 Beta(B.1.351)]的感染力。最重要的是,4G10-ADC 进入感染 SARS-CoV-2 的细胞,随后释放 NGI-1 以去糖基化刺突蛋白,从而增强了抗体、疫苗或恢复期血清的中和能力,并降低了 SARS-CoV-2 变异株的感染力。
我们的结果表明,通过 ADC 靶向进化保守的 STT3A 介导的糖基化可以对 SARS-CoV-2 变异株的感染力产生深远影响。因此,我们已经确定了一种新的去糖基化方法,适合体外消除 SARS-CoV-2 变异株感染。
对本研究做出贡献的所有资金机构的完整列表可在致谢部分找到。