Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.
Department of Mechanical Engineering, Stanford University, Palo Alto, United States.
Elife. 2022 Aug 4;11:e80778. doi: 10.7554/eLife.80778.
The giant ciliate Stentor coeruleus is a classical model system for studying regeneration and morphogenesis in a single cell. The anterior of the cell is marked by an array of cilia, known as the oral apparatus, which can be induced to shed and regenerate in a series of reproducible morphological steps, previously shown to require transcription. If a cell is cut in half, each half regenerates an intact cell. We used RNA sequencing (RNAseq) to assay the dynamic changes in Stentor's transcriptome during regeneration, after both oral apparatus shedding and bisection, allowing us to identify distinct temporal waves of gene expression including kinases, RNA -binding proteins, centriole biogenesis factors, and orthologs of human ciliopathy genes. By comparing transcriptional profiles of different regeneration events, we identified distinct modules of gene expression corresponding to oral apparatus regeneration, posterior holdfast regeneration, and recovery after wounding. By measuring gene expression after blocking translation, we show that the sequential waves of gene expression involve a cascade mechanism in which later waves of expression are triggered by translation products of early-expressed genes. Among the early-expressed genes, we identified an E2F transcription factor and the RNA-binding protein Pumilio as potential regulators of regeneration based on the expression pattern of their predicted target genes. RNAi-mediated knockdown experiments indicate that Pumilio is required for regenerating oral structures of the correct size. E2F is involved in the completion of regeneration but is dispensable for earlier steps. This work allows us to classify regeneration genes into groups based on their potential role for regeneration in distinct cell regeneration paradigms, and provides insight into how a single cell can coordinate complex morphogenetic pathways to regenerate missing structures.
蓝色大草履虫是研究单细胞再生和形态发生的经典模式生物系统。细胞的前端有一系列被称为口器的纤毛,可以在一系列可重复的形态发生步骤中诱导脱落和再生,之前的研究表明这一过程需要转录。如果将一个细胞切成两半,每一半都会再生出一个完整的细胞。我们使用 RNA 测序(RNAseq)来检测 Stentor 在口器脱落和二分后再生过程中的转录组动态变化,从而可以鉴定出包括激酶、RNA 结合蛋白、中心体生物发生因子和人类纤毛病基因同源物在内的不同时间的基因表达波。通过比较不同再生事件的转录谱,我们确定了与口器再生、后固着器再生和受伤后恢复相对应的不同基因表达模块。通过测量翻译阻断后的基因表达,我们表明,基因表达的顺序波涉及级联机制,其中后期表达波是由早期表达基因的翻译产物触发的。在早期表达的基因中,我们根据其预测靶基因的表达模式,确定了 E2F 转录因子和 RNA 结合蛋白 Pumilio 作为再生的潜在调节剂。RNAi 介导的敲低实验表明,Pumilio 是再生正确大小的口器结构所必需的。E2F 参与了再生的完成,但在早期步骤中是可有可无的。这项工作使我们能够根据它们在不同细胞再生范例中的潜在再生作用,将再生基因分类为不同的基因群,并深入了解单细胞如何协调复杂的形态发生途径来再生缺失的结构。