Suppr超能文献

比较包含自回归效应的修正潜在状态-特质模型。

Comparing revised latent state-trait models including autoregressive effects.

机构信息

Department of Psychological Methods and Evaluation, Faculty of Psychology and Sport Science, Bielefeld University.

German Hodgkin Study Group (GHSG), Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne.

出版信息

Psychol Methods. 2024 Feb;29(1):155-168. doi: 10.1037/met0000523. Epub 2022 Aug 4.

Abstract

Understanding the longitudinal dynamics of behavior, their stability and change over time, are of great interest in the social and behavioral sciences. Researchers investigate the degree to which an observed measure reflects stable components of the construct, situational fluctuations, method effects, or just random measurement error. An important question in such models is whether autoregressive effects occur between the residuals, as in the trait-state occasion model (TSO model), or between the state variables, as in the latent state-trait model with autoregression (LST-AR model). In this article, we compare the two approaches by applying revised latent state-trait theory (LST-R theory). Similarly to Eid et al. (2017) regarding the TSO model, we show how to formulate the LST-AR model using definitions from LST-R theory, and we discuss the practical implications. We demonstrate that the two models are equivalent when the trait loadings are allowed to vary over time. This is also true for bivariate model versions. The different but same approaches to modeling latent states and traits with autoregressive effects are illustrated with a longitudinal study of cancer-related fatigue in Hodgkin lymphoma patients. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

理解行为的纵向动态及其随时间的稳定性和变化,是社会和行为科学非常关注的问题。研究人员研究观察到的测量值在多大程度上反映了结构的稳定成分、情境波动、方法效应,还是仅仅是随机测量误差。在这种模型中,一个重要的问题是残差之间是否存在自回归效应,就像特质-状态偶发模型(TSO 模型)那样,还是状态变量之间存在自回归效应,就像带有自回归的潜在状态-特质模型(LST-AR 模型)那样。在本文中,我们通过应用修订后的潜在状态-特质理论(LST-R 理论)来比较这两种方法。与 Eid 等人(2017 年)关于 TSO 模型的研究类似,我们展示了如何使用 LST-R 理论的定义来构建 LST-AR 模型,并讨论了其实践意义。我们证明,当特质加载项随时间变化时,这两个模型是等效的。对于二元模型版本也是如此。带有自回归效应的潜在状态和特质的不同但相同的建模方法,通过霍奇金淋巴瘤患者癌症相关疲劳的纵向研究进行了说明。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验