Suppr超能文献

新冠疫情期间工人的情绪耗竭与心理健康:一种动态结构方程建模(DSEM)方法。

Workers' emotional exhaustion and mental well-being over the COVID-19 pandemic: a Dynamic Structural Equation Modeling (DSEM) approach.

作者信息

Perinelli Enrico, Vignoli Michela, Kröner Friedrich, Müller Andreas, Genrich Melanie, Fraccaroli Franco

机构信息

Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.

Institute of Psychology, Work & Organizational Psychology, University of Duisburg-Essen, Essen, Germany.

出版信息

Front Psychol. 2023 Oct 5;14:1222845. doi: 10.3389/fpsyg.2023.1222845. eCollection 2023.

Abstract

The COVID-19 pandemic has presented significant challenges to the workforce, particularly concerning emotional and mental well-being. Given the prolonged periods of work-related stress, unexpected organizational changes, and uncertainties about work faced during the pandemic, it becomes imperative to study occupational health constructs under a dynamic methodological perspective, to understand their stable and unstable characteristics better. In this study, drawing on the Dynamic Structural Equation Modeling (DSEM) framework, we used a combination of multilevel AR(1) models, Residual-DSEM (RDSEM), multilevel bivariate VAR(1) models, and multilevel location-scale models to investigate the autoregression, trend, and (residual) cross-lagged relationships between emotional exhaustion (EmEx) and mental well-being (MWB) over the COVID-19 pandemic. Data were collected weekly on 533 workers from Germany (91.18%) and Italy (8.82%) who completed a self-reported battery (total number of observations = 3,946). Consistent with our hypotheses, results were as follows: (a) regarding , the autoregressive component for both EmEx and MWB was positive and significant, as well as it was their associated between-level variability; (b) regarding , over time EmEx significantly increased, while MWB significantly declined, furthermore both changes had a significant between-level variability; (c) regarding the longitudinal bivariate () relationships, EmEx and MWB negatively and significantly affected each other from week to week, furthermore both cross-lagged relationships showed to have significant between-level variance. Overall, our study pointed attention to the vicious cycle between EmEx and MWB, even after controlling for their autoregressive component and trend, and supported the utility of DSEM in occupational health psychology studies.

摘要

新冠疫情给劳动力带来了重大挑战,尤其是在情绪和心理健康方面。鉴于疫情期间长时间的工作压力、意外的组织变革以及工作中的不确定性,从动态方法论的角度研究职业健康结构,以更好地理解其稳定和不稳定特征变得势在必行。在本研究中,我们借鉴动态结构方程模型(DSEM)框架,使用多层次自回归(AR(1))模型、残差动态结构方程模型(RDSEM)、多层次双变量向量自回归(VAR(1))模型和多层次位置尺度模型的组合,来研究在新冠疫情期间情绪耗竭(EmEx)和心理健康(MWB)之间的自回归、趋势和(残差)交叉滞后关系。每周收集来自德国(91.18%)和意大利(8.82%)的533名工人的数据,他们完成了一份自我报告问卷(观测总数 = 3946)。与我们的假设一致,结果如下:(a)关于 ,EmEx和MWB的自回归成分均为正且显著,其组间变异性也显著;(b)关于 ,随着时间的推移,EmEx显著增加,而MWB显著下降,此外这两种变化都具有显著的组间变异性;(c)关于纵向双变量()关系,EmEx和MWB每周都相互产生显著的负面影响,此外两种交叉滞后关系都显示出显著的组间方差。总体而言,我们的研究指出了即使在控制了EmEx和MWB的自回归成分和趋势之后,它们之间仍存在恶性循环,并支持了DSEM在职业健康心理学研究中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dab/10585024/5b5b8501411d/fpsyg-14-1222845-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验