Suppr超能文献

通过短链、密集交联的二氧化硅玻璃网络提高量子点的抗氧/防潮性能。

Enhancing oxygen/moisture resistance of quantum dots by short-chain, densely cross-linked silica glass network.

作者信息

Yang Xuan, Zhou Shuling, Zhang Xinfeng, Xiang Linyi, Xie Bin, Luo Xiaobing

机构信息

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

School of Mechanical Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

出版信息

Nanotechnology. 2022 Aug 30;33(46). doi: 10.1088/1361-6528/ac86de.

Abstract

Quantum dots (QDs) are facing significant photoluminescence degradation in moisture environment. In QDs-silicone composites, the poor water resistance of silicone matrix makes it easy for water and oxygen molecules to erode QDs. To tackle this issue, we proposed a new QDs protection strategy by introducing short-chain silica precursors onto the QDs' surface, so that a dense silica passivation layer could be formed onto the QDs nanoparticles. Sol-gel method based on 3-aminopropyl triethoxysilane (APTES), 3-mercaptopropyl trimethoxysilane (MPTMS), and 3-mercaptopropyl triethoxysilane (MPTES) were adopted to prepare the uniform and crack-free QDs-silica glass (QD-glass). Because of the crosslinking of short-chain precursors, the formed silica glass possesses 38.6% smaller pore width and 68.6% lower pore volume than silicone, indicating its denser cross-linked network surrounding QDs. After 360 h water immersion, the QDs-glass demonstrated a 6% enhancement in red-light peak intensity, and maintained a stable full width at half maximum (FWHM) and peak wavelength, proving its excellent water-resistant ability. However, the conventional QDs-silicone composites not only showed a decrease of 75.3% in red-light peak intensity, but also a broadened FWHM and a redshifted peak wavelength after water immersion. QDs-glass also showed superior photostability after 132 h exposure to blue light. Red-light peak intensity of QDs-glass remained 87.3% of the initial while that of QDs-silicone decreased to 19.8%. And the intensity of QDs-glass dropped to 62.3% of that under 20 °C after thermal treatment of 160 °C. Besides, under increasing driving currents, the light conversion efficiency drop of QDs-glass is only one fifth that of QDs-silicone. Based on the QDs-glass, the white light-emitting diodes was achieved with a high luminous efficiency of 126.5 lm Wand a high color rendering index of 95.4. Thus, the newly proposed QD-glass has great significance in guaranteeing the working reliability of QDs-converted devices against moisture and high-power environment.

摘要

量子点(QDs)在潮湿环境中面临着显著的光致发光降解问题。在量子点-硅复合材料中,硅基体的耐水性较差,使得水分子和氧分子很容易侵蚀量子点。为了解决这个问题,我们提出了一种新的量子点保护策略,即在量子点表面引入短链二氧化硅前驱体,从而在量子点纳米颗粒上形成致密的二氧化硅钝化层。采用基于3-氨丙基三乙氧基硅烷(APTES)、3-巯基丙基三甲氧基硅烷(MPTMS)和3-巯基丙基三乙氧基硅烷(MPTES)的溶胶-凝胶法制备了均匀且无裂纹的量子点-二氧化硅玻璃(QD-玻璃)。由于短链前驱体的交联作用,形成的二氧化硅玻璃的孔径宽度比硅酮小38.6%,孔体积比硅酮低68.6%,这表明其围绕量子点的交联网络更致密。经过360小时的水浸后,QD-玻璃的红光峰值强度提高了6%,并且半高宽(FWHM)和峰值波长保持稳定,证明了其优异的耐水能力。然而,传统的量子点-硅复合材料在水浸后不仅红光峰值强度下降了75.3%,而且半高宽变宽,峰值波长发生红移。QD-玻璃在蓝光照射132小时后也表现出优异的光稳定性。QD-玻璃的红光峰值强度保持在初始值的87.3%,而量子点-硅复合材料的则降至19.8%。并且在160℃热处理后,QD-玻璃的强度降至20℃时的62.3%。此外,在驱动电流增加时,QD-玻璃的光转换效率下降仅为量子点-硅复合材料的五分之一。基于QD-玻璃,实现了发光效率高达126.5 lm/W且显色指数高达95.4的白色发光二极管。因此,新提出的QD-玻璃对于保证量子点转换器件在潮湿和高功率环境下的工作可靠性具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验