Suppr超能文献

使用非侵入性可穿戴传感器检测低血糖和高血糖:心电图和加速度计。

Detection of Hypoglycemia and Hyperglycemia Using Noninvasive Wearable Sensors: Electrocardiograms and Accelerometry.

机构信息

Wm Michael Barnes '64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA.

Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.

出版信息

J Diabetes Sci Technol. 2024 Mar;18(2):351-362. doi: 10.1177/19322968221116393. Epub 2022 Aug 4.

Abstract

BACKGROUND

Monitoring glucose excursions is important in diabetes management. This can be achieved using continuous glucose monitors (CGMs). However, CGMs are expensive and invasive. Thus, alternative low-cost noninvasive wearable sensors capable of predicting glycemic excursions could be a game changer to manage diabetes.

METHODS

In this article, we explore two noninvasive sensor modalities, electrocardiograms (ECGs) and accelerometers, collected on five healthy participants over two weeks, to predict both hypoglycemic and hyperglycemic excursions. We extract 29 features encompassing heart rate variability features from the ECG, and time- and frequency-domain features from the accelerometer. We evaluated two machine learning approaches to predict glycemic excursions: a classification model and a regression model.

RESULTS

The best model for both hypoglycemia and hyperglycemia detection was the regression model based on ECG and accelerometer data, yielding 76% sensitivity and specificity for hypoglycemia and 79% sensitivity and specificity for hyperglycemia. This had an improvement of 5% in sensitivity and specificity for both hypoglycemia and hyperglycemia when compared with using ECG data alone.

CONCLUSIONS

Electrocardiogram is a promising alternative not only to detect hypoglycemia but also to predict hyperglycemia. Supplementing ECG data with contextual information from accelerometer data can improve glucose prediction.

摘要

背景

监测血糖波动对于糖尿病管理非常重要。这可以通过连续血糖监测仪(CGM)来实现。然而,CGM 既昂贵又具侵入性。因此,能够预测血糖波动的替代低成本非侵入性可穿戴传感器可能会成为糖尿病管理的游戏规则改变者。

方法

在本文中,我们探索了两种非侵入性传感器模式,即心电图(ECG)和加速度计,在五名健康参与者身上采集了两周的数据,以预测低血糖和高血糖波动。我们从 ECG 中提取了 29 个包含心率变异性特征的特征,以及从加速度计中提取了时频域特征。我们评估了两种用于预测血糖波动的机器学习方法:分类模型和回归模型。

结果

低血糖和高血糖检测的最佳模型是基于 ECG 和加速度计数据的回归模型,低血糖的灵敏度和特异性为 76%,高血糖的灵敏度和特异性为 79%。与单独使用 ECG 数据相比,低血糖和高血糖的灵敏度和特异性分别提高了 5%。

结论

心电图不仅是检测低血糖的有前途的替代方法,也是预测高血糖的有前途的替代方法。通过将来自加速度计数据的上下文信息补充到 ECG 数据中,可以提高血糖预测的准确性。

相似文献

1
Detection of Hypoglycemia and Hyperglycemia Using Noninvasive Wearable Sensors: Electrocardiograms and Accelerometry.
J Diabetes Sci Technol. 2024 Mar;18(2):351-362. doi: 10.1177/19322968221116393. Epub 2022 Aug 4.
2
Regarding "Detection of Hypoglycemia and Hyperglycemia Using Noninvasive Wearable Sensors: ECG and Accelerometry".
J Diabetes Sci Technol. 2023 Nov;17(6):1722-1723. doi: 10.1177/19322968221133813. Epub 2022 Oct 31.
5
Efficacy of continuous glucose monitoring system to detect unrecognized hypoglycemia in children and adolescents with type 1 diabetes.
Arq Bras Endocrinol Metabol. 2005 Aug;49(4):569-74. doi: 10.1590/s0004-27302005000400016. Epub 2005 Oct 19.
6
Identification of hypoglycemia and hyperglycemia in type 1 diabetic patients using ECG parameters.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2716-9. doi: 10.1109/EMBC.2012.6346525.
7
[Metabolic/glycemic control accuracy, effect and complications of the continuous glucose monitoring system in diabetic patients].
Rev Assoc Med Bras (1992). 2006 Nov-Dec;52(6):395-400. doi: 10.1590/s0104-42302006000600017.
10
Hypo- and Hyperglycemic Alarms: Devices and Algorithms.
J Diabetes Sci Technol. 2015 Apr 30;9(5):1126-37. doi: 10.1177/1932296815583507.

引用本文的文献

2
Real-World Insights Into Hypoglycemia Risk While Driving in Teens and Young Adults With Type 1 Diabetes.
Pediatr Diabetes. 2025 Jan 16;2025:5053872. doi: 10.1155/pedi/5053872. eCollection 2025.
5
Diabetes Technology Meeting 2023.
J Diabetes Sci Technol. 2024 Sep;18(5):1208-1244. doi: 10.1177/19322968241235205. Epub 2024 Mar 25.
6
Regarding "Detection of Hypoglycemia and Hyperglycemia Using Noninvasive Wearable Sensors: ECG and Accelerometry".
J Diabetes Sci Technol. 2023 Nov;17(6):1722-1723. doi: 10.1177/19322968221133813. Epub 2022 Oct 31.

本文引用的文献

1
Penalty weighted glucose prediction models could lead to better clinically usage.
Comput Biol Med. 2021 Nov;138:104865. doi: 10.1016/j.compbiomed.2021.104865. Epub 2021 Sep 15.
3
Non-invasive Monitoring of Three Glucose Ranges Based On ECG By Using DBSCAN-CNN.
IEEE J Biomed Health Inform. 2021 Sep;25(9):3340-3350. doi: 10.1109/JBHI.2021.3072628. Epub 2021 Sep 3.
4
Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments.
Diabetes Metab Res Rev. 2021 Oct;37(7):e3449. doi: 10.1002/dmrr.3449. Epub 2021 Mar 24.
6
NeuroKit2: A Python toolbox for neurophysiological signal processing.
Behav Res Methods. 2021 Aug;53(4):1689-1696. doi: 10.3758/s13428-020-01516-y. Epub 2021 Feb 2.
7
Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor.
Sensors (Basel). 2020 Dec 3;20(23):6897. doi: 10.3390/s20236897.
9
Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction.
J Diabetes Sci Technol. 2021 Jul;15(4):842-855. doi: 10.1177/1932296820922622. Epub 2020 Jun 1.
10
Time in range: a new parameter to evaluate blood glucose control in patients with diabetes.
Diabetol Metab Syndr. 2020 Mar 16;12:22. doi: 10.1186/s13098-020-00529-z. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验