Suppr超能文献

关于为适应性学习设计人工智能系统时的分布式认知

On Distributed Cognition While Designing an AI System for Adapted Learning.

作者信息

Aarset Magne V, Johannessen Leiv Kåre

机构信息

Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology - NTNU, Ålesund, Norway.

TERP Research Department - TRD, TERP AS, Haugesund, Norway.

出版信息

Front Artif Intell. 2022 Jul 19;5:910630. doi: 10.3389/frai.2022.910630. eCollection 2022.

Abstract

When analyzing learning, focus has traditionally been on the teacher, but has in the recent decades slightly moved toward the learner. This is also reflected when supporting systems, both computer-based and more practical equipment, has been introduced. Seeing learning as an integration of both an internal psychological process of acquisition and elaboration, and an external interaction process between the learner and the rest of the learning environment though, we see the necessity of expanding the vision and taking on a more holistic view to include the whole learning environment. Specially, when introducing an AI (artificial intelligence) system for adapting the learning process to an individual learner through machine learning, this AI system should take into account both the learner and the other agents and artifacts being part of this extended learning system. This paper outlines some lessons learned in a process of developing an electronic textbook adapting to a single learner through machine learning, to the process of extracting input from and providing feedback both to the learner, the teacher, the learning institution, and the learning resources provider based on a XAI (explainable artificial intelligence) system while also taking into account characteristics with respect to the learner's peers.

摘要

在分析学习时,传统上重点一直放在教师身上,但近几十年来,重点已略有转向学习者。在引入支持系统时也体现了这一点,这些支持系统包括基于计算机的系统以及更实用的设备。然而,将学习视为内部心理获取和细化过程与学习者和学习环境其他部分之间外部交互过程的整合时,我们认识到有必要拓宽视野,采取更全面的观点,将整个学习环境纳入其中。特别是,当引入一个通过机器学习使学习过程适应个体学习者的人工智能(AI)系统时,则该人工智能系统应同时考虑学习者以及作为这个扩展学习系统一部分的其他主体和工件。本文概述了在一个通过机器学习开发适应单个学习者的电子教科书的过程中所吸取的一些经验教训,即在基于可解释人工智能(XAI)系统从学习者、教师、学习机构和学习资源提供者那里提取输入并向他们提供反馈的过程中,同时考虑学习者同伴的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d536/9344062/ae61c85d01e6/frai-05-910630-g0001.jpg

相似文献

7
Explainable AI (xAI) for Anatomic Pathology.可解释人工智能(xAI)在解剖病理学中的应用。
Adv Anat Pathol. 2020 Jul;27(4):241-250. doi: 10.1097/PAP.0000000000000264.

本文引用的文献

1
Modeling the Mediating Role of Volition in the Learning Process.
Contemp Educ Psychol. 1998 Oct;23(4):392-418. doi: 10.1006/ceps.1998.0982.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验