Suppr超能文献

可解释人工智能在诊断与手术中的应用。

Applications of Explainable Artificial Intelligence in Diagnosis and Surgery.

作者信息

Zhang Yiming, Weng Ying, Lund Jonathan

机构信息

School of Computer Science, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.

School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Diagnostics (Basel). 2022 Jan 19;12(2):237. doi: 10.3390/diagnostics12020237.

Abstract

In recent years, artificial intelligence (AI) has shown great promise in medicine. However, explainability issues make AI applications in clinical usages difficult. Some research has been conducted into explainable artificial intelligence (XAI) to overcome the limitation of the black-box nature of AI methods. Compared with AI techniques such as deep learning, XAI can provide both decision-making and explanations of the model. In this review, we conducted a survey of the recent trends in medical diagnosis and surgical applications using XAI. We have searched articles published between 2019 and 2021 from PubMed, IEEE Xplore, Association for Computing Machinery, and Google Scholar. We included articles which met the selection criteria in the review and then extracted and analyzed relevant information from the studies. Additionally, we provide an experimental showcase on breast cancer diagnosis, and illustrate how XAI can be applied in medical XAI applications. Finally, we summarize the XAI methods utilized in the medical XAI applications, the challenges that the researchers have met, and discuss the future research directions. The survey result indicates that medical XAI is a promising research direction, and this study aims to serve as a reference to medical experts and AI scientists when designing medical XAI applications.

摘要

近年来,人工智能(AI)在医学领域展现出了巨大的潜力。然而,可解释性问题使得人工智能在临床应用中面临困难。为了克服人工智能方法黑箱性质的局限性,人们开展了一些关于可解释人工智能(XAI)的研究。与深度学习等人工智能技术相比,可解释人工智能能够提供模型的决策过程及解释。在本综述中,我们对使用可解释人工智能的医学诊断和手术应用的最新趋势进行了调查。我们从PubMed、IEEE Xplore、美国计算机协会和谷歌学术搜索了2019年至2021年发表的文章。我们纳入了符合综述选择标准的文章,然后从这些研究中提取并分析相关信息。此外,我们提供了一个乳腺癌诊断的实验展示,并说明可解释人工智能如何应用于医学可解释人工智能应用中。最后,我们总结了医学可解释人工智能应用中使用的可解释人工智能方法、研究人员遇到的挑战,并讨论了未来的研究方向。调查结果表明,医学可解释人工智能是一个有前景的研究方向,本研究旨在为医学专家和人工智能科学家设计医学可解释人工智能应用时提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b66/8870992/d569bc7cfda9/diagnostics-12-00237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验