Suppr超能文献

实用指南:用于在对照和缺血条件下制备、计算重建和分析 3D 人类神经元网络。

Practical guide for preparation, computational reconstruction and analysis of 3D human neuronal networks in control and ischaemic conditions.

机构信息

Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland.

出版信息

Development. 2022 Oct 15;149(20). doi: 10.1242/dev.200012. Epub 2022 Aug 5.

Abstract

To obtain commensurate numerical data of neuronal network morphology in vitro, network analysis needs to follow consistent guidelines. Important factors in successful analysis are sample uniformity, suitability of the analysis method for extracting relevant data and the use of established metrics. However, for the analysis of 3D neuronal cultures, there is little coherence in the analysis methods and metrics used in different studies. Here, we present a framework for the analysis of neuronal networks in 3D. First, we selected a hydrogel that supported the growth of human pluripotent stem cell-derived cortical neurons. Second, we tested and compared two software programs for tracing multi-neuron images in three dimensions and optimized a workflow for neuronal analysis using software that was considered highly suitable for this purpose. Third, as a proof of concept, we exposed 3D neuronal networks to oxygen-glucose deprivation- and ionomycin-induced damage and showed morphological differences between the damaged networks and control samples utilizing the proposed analysis workflow. With the optimized workflow, we present a protocol for preparing, challenging, imaging and analysing 3D human neuronal cultures.

摘要

为了获得体外神经元网络形态学的相应数值数据,网络分析需要遵循一致的准则。成功分析的重要因素包括样本的均一性、分析方法提取相关数据的适用性以及既定指标的使用。然而,对于 3D 神经元培养物的分析,不同研究中使用的分析方法和指标几乎没有一致性。在这里,我们提出了一个用于分析 3D 神经元网络的框架。首先,我们选择了一种水凝胶,它支持人多能干细胞衍生的皮质神经元的生长。其次,我们测试和比较了两种用于三维追踪多神经元图像的软件程序,并优化了使用被认为非常适合该目的的软件进行神经元分析的工作流程。第三,作为概念验证,我们将 3D 神经元网络暴露于氧葡萄糖剥夺和离子霉素诱导的损伤中,并利用所提出的分析工作流程显示损伤网络和对照样本之间的形态差异。使用优化的工作流程,我们提出了一种用于制备、挑战、成像和分析 3D 人类神经元培养物的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cb9/9440753/afbba71e4146/develop-149-200012-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验