Suppr超能文献

迈向芯片上的大脑:在定制的3D纳米打印微支架中由人类诱导多能干细胞衍生的定向神经网络。

Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds.

作者信息

Harberts Jann, Fendler Cornelius, Teuber Jeremy, Siegmund Malte, Silva Aaron, Rieck Niklas, Wolpert Merle, Zierold Robert, Blick Robert H

机构信息

Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.

Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States.

出版信息

ACS Nano. 2020 Oct 27;14(10):13091-13102. doi: 10.1021/acsnano.0c04640. Epub 2020 Oct 15.

Abstract

Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using -stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.

摘要

芯片上的大脑(BoC)概念应考虑三维(3D)支架,以模拟传统平面细胞培养无法触及的人类大脑的三维特性。此外,充分应对神经系统人类病理生理疾病(如帕金森病或阿尔茨海默病)药物开发的关键在于使用人类诱导多能干细胞(iPSC)衍生的神经元,而非动物模型来源的神经元。为解决这两个问题,我们展示了在通过直接激光写入制备的适用于BoC的微支架中培养的电生理成熟的人类iPSC衍生神经元。通过由独立微通道相互连接的3D纳米打印定制凸起腔来创建具有二维拓扑结构的确定神经元网络——作为概念验证。使用共聚焦显微镜制备的 - 堆栈以及聚焦离子束铣削制备的横截面扫描电子显微镜图像,从神经突长度、连续网络大小和分支行为等方面研究了这些非平面结构中的神经元生长。通过在电流钳和电压钳模式下的膜片钳测量证明了人类iPSC衍生神经元的功能。动作电位和自发性兴奋性突触后电流——适当网络信号传导的基本前提——证明了这些人工神经元网络的完全完整性。考虑到仅在几天内就发生了网络形成,以及直接激光写入的多功能性可用于创建更复杂的3D网络拓扑支架,我们相信我们的研究为人类疾病研究提供了额外的方法,以在BoC研究中模拟人类大脑的复杂互连性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验