Suppr超能文献

解读神经发育障碍中心理模型的多样性:使用自然语言处理对公共数据进行知识图谱表示。

Deciphering the Diversity of Mental Models in Neurodevelopmental Disorders: Knowledge Graph Representation of Public Data Using Natural Language Processing.

机构信息

Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

J Med Internet Res. 2022 Aug 5;24(8):e39888. doi: 10.2196/39888.

Abstract

BACKGROUND

Understanding how individuals think about a topic, known as the mental model, can significantly improve communication, especially in the medical domain where emotions and implications are high. Neurodevelopmental disorders (NDDs) represent a group of diagnoses, affecting up to 18% of the global population, involving differences in the development of cognitive or social functions. In this study, we focus on 2 NDDs, attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), which involve multiple symptoms and interventions requiring interactions between 2 important stakeholders: parents and health professionals. There is a gap in our understanding of differences between mental models for each stakeholder, making communication between stakeholders more difficult than it could be.

OBJECTIVE

We aim to build knowledge graphs (KGs) from web-based information relevant to each stakeholder as proxies of mental models. These KGs will accelerate the identification of shared and divergent concerns between stakeholders. The developed KGs can help improve knowledge mobilization, communication, and care for individuals with ADHD and ASD.

METHODS

We created 2 data sets by collecting the posts from web-based forums and PubMed abstracts related to ADHD and ASD. We utilized the Unified Medical Language System (UMLS) to detect biomedical concepts and applied Positive Pointwise Mutual Information followed by truncated Singular Value Decomposition to obtain corpus-based concept embeddings for each data set. Each data set is represented as a KG using a property graph model. Semantic relatedness between concepts is calculated to rank the relation strength of concepts and stored in the KG as relation weights. UMLS disorder-relevant semantic types are used to provide additional categorical information about each concept's domain.

RESULTS

The developed KGs contain concepts from both data sets, with node sizes representing the co-occurrence frequency of concepts and edge sizes representing relevance between concepts. ADHD- and ASD-related concepts from different semantic types shows diverse areas of concerns and complex needs of the conditions. KG identifies converging and diverging concepts between health professionals literature (PubMed) and parental concerns (web-based forums), which may correspond to the differences between mental models for each stakeholder.

CONCLUSIONS

We show for the first time that generating KGs from web-based data can capture the complex needs of families dealing with ADHD or ASD. Moreover, we showed points of convergence between families and health professionals' KGs. Natural language processing-based KG provides access to a large sample size, which is often a limiting factor for traditional in-person mental model mapping. Our work offers a high throughput access to mental model maps, which could be used for further in-person validation, knowledge mobilization projects, and basis for communication about potential blind spots from stakeholders in interactions about NDDs. Future research will be needed to identify how concepts could interact together differently for each stakeholder.

摘要

背景

了解个体对某个主题的看法,即心理模型,可显著改善沟通,尤其是在涉及情绪和影响的医疗领域。神经发育障碍(NDD)是一组诊断,影响全球多达 18%的人口,包括认知或社会功能发展方面的差异。在这项研究中,我们关注 2 种 NDD,即注意缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD),它们涉及多种症状和干预措施,需要父母和健康专业人员这两个重要利益相关者之间的互动。我们对每个利益相关者的心理模型之间的差异了解不足,这使得利益相关者之间的沟通变得比实际情况更加困难。

目的

我们旨在通过从与每个利益相关者相关的基于网络的信息中构建知识图(KG),作为心理模型的代理。这些 KG 将加速确定利益相关者之间的共同关注和分歧。开发的 KG 可以帮助改善 ADHD 和 ASD 个体的知识传播、沟通和护理。

方法

我们通过收集与 ADHD 和 ASD 相关的基于网络论坛的帖子和 PubMed 摘要创建了 2 个数据集。我们利用统一医学语言系统(UMLS)检测生物医学概念,并应用正点互信息(PPMI)和截断奇异值分解(SVD)获得每个数据集的基于语料库的概念嵌入。每个数据集都使用属性图模型表示为 KG。通过计算概念之间的语义相关性来对概念的关系强度进行排名,并将关系权重存储在 KG 中。UMLS 疾病相关语义类型用于提供每个概念的领域的附加分类信息。

结果

所开发的 KG 包含来自两个数据集的概念,节点大小表示概念的共现频率,边缘大小表示概念之间的相关性。来自不同语义类型的 ADHD 和 ASD 相关概念显示出不同的关注领域和病情的复杂需求。KG 识别了健康专业人员文献(PubMed)和父母关注(基于网络的论坛)之间的趋同和分歧概念,这可能对应于每个利益相关者心理模型之间的差异。

结论

我们首次表明,从基于网络的数据源生成 KG 可以捕捉到 ADHD 或 ASD 家庭的复杂需求。此外,我们还展示了家庭和健康专业人员 KG 之间的趋同点。基于自然语言处理的 KG 可以访问大量样本,这往往是传统面对面心理模型映射的一个限制因素。我们的工作提供了对心理模型图的高吞吐量访问,可用于进一步的面对面验证、知识动员项目以及为 NDD 利益相关者在互动中潜在盲点提供沟通基础。未来的研究将需要确定概念如何以不同的方式为每个利益相关者交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc1/9391978/9ab0529c9b93/jmir_v24i8e39888_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验