Hu Junxian, Guan Chaohong, Li Huangxu, Xie Yangyang, Zhang Liuyun, Zheng Jingqiang, Lai Yanqing, Zhang Zhian
School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, PR China.
J Colloid Interface Sci. 2022 Feb;607(Pt 2):1109-1119. doi: 10.1016/j.jcis.2021.09.068. Epub 2021 Sep 15.
The development of durable and stable metal oxide anodes for potassium ion batteries (PIBs) has been hampered by poor electrochemical performance and ambiguous reaction mechanisms. Herein, we design and fabricate molybdenum dioxide (MoO)@N-doped porous carbon (NPC) nano-octahedrons through metal-organic frameworks derived strategy for PIBs with MoO nanoparticles confined within NPC nano-octahedrons. Benefiting from the synergistic effect of nanoparticle level of MoO and N-doped carbon porous nano-octahedrons, the MoO@NPC electrode exhibits superior electron/ion transport kinetics, excellent structural integrity, and impressive potassium-ion storage performance with enhanced cyclic stability and high-rate capability. The density functional theory calculations and experiment test proved that MoO@NPC has a higher affinity of potassium and higher conductivity than MoO and N-doped carbon electrodes. Kinetics analysis revealed that surface pseudocapacitive contributions are greatly enhanced for MoO@NPC nano-octahedrons. In-situ and ex-situ analysis confirmed an intercalation reaction mechanism of MoO@NPC for potassium ion storage. Furthermore, the assembled MoO@NPC//perylenetetracarboxylic dianhydride (PTCDA) full cell exhibits good cycling stability with 72.6 mAh g retained at 100 mA g over 200 cycles. Therefore, this work present here not only evidences an effective and viable structural engineering strategy for enhancing the electrochemical behavior of MoO material in PIBs, but also gives a comprehensive insight of kinetic and mechanism for potassium ion interaction with metal oxide.
用于钾离子电池(PIB)的耐用且稳定的金属氧化物阳极的开发一直受到电化学性能不佳和反应机制不明确的阻碍。在此,我们通过金属有机框架衍生策略设计并制备了二氧化钼(MoO)@N掺杂多孔碳(NPC)纳米八面体,用于将MoO纳米颗粒限制在NPC纳米八面体内的PIB。受益于MoO纳米颗粒水平与N掺杂碳多孔纳米八面体的协同效应,MoO@NPC电极表现出优异的电子/离子传输动力学、出色的结构完整性以及令人印象深刻的钾离子存储性能,具有增强的循环稳定性和高倍率性能。密度泛函理论计算和实验测试证明,MoO@NPC对钾具有更高的亲和力和比MoO及N掺杂碳电极更高的电导率。动力学分析表明,MoO@NPC纳米八面体的表面赝电容贡献大大增强。原位和非原位分析证实了MoO@NPC用于钾离子存储的嵌入反应机制。此外,组装的MoO@NPC//苝四羧酸二酐(PTCDA)全电池表现出良好的循环稳定性,在100 mA g下200次循环后仍保留72.6 mAh g。因此,本文的这项工作不仅证明了一种有效且可行的结构工程策略,用于增强MoO材料在PIB中的电化学行为,还全面深入地了解了钾离子与金属氧化物相互作用的动力学和机制。