Suppr超能文献

解析蛋白 G 和蛋白 L 及其突变体的折叠机制。

Deciphering the Folding Mechanism of Proteins G and L and Their Mutants.

机构信息

Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States.

出版信息

J Am Chem Soc. 2022 Aug 17;144(32):14668-14677. doi: 10.1021/jacs.2c04488. Epub 2022 Aug 5.

Abstract

Much of our understanding of folding mechanisms comes from interpretations of experimental ϕ and ψ value analysis, relating the differences in stability of the transition state ensemble (TSE) and folded state. We introduce a unified approach combining simulations and Bayesian inference to provide atomistic detail for the folding mechanism of proteins G and L and their mutants. Proteins G and L fold to similar topologies despite low sequence similarity, but differ in their folding pathways. A fast folding redesign of protein G, NuG2, switches folding pathways and folds through a similar pathway with protein L. A redesign of protein L also leads to faster folding, respecting the original folding pathway. Our Bayesian inference approach starts from the same on all systems and correctly identifies the folding mechanism for each of the four proteins, a success of the force field and sampling strategy. The approach is computationally efficient and correctly identifies the TSE and intermediate structures along the folding pathway in good agreement with experiments. We complement our findings by using two orthogonal approaches that differ in computational cost and interpretability. Adaptive sampling MD combined with the Markov state model provides a kinetic model that confirms the more complex folding mechanism of protein G and its mutant. Finally, a novel fragment decomposition approach using AlphaFold identifies preferences for secondary structure element combinations that follow the order of events observed in the folding pathways.

摘要

我们对折叠机制的理解在很大程度上来自于对实验ϕ和ψ值分析的解释,这些分析涉及到过渡态集合(TSE)和折叠状态稳定性的差异。我们引入了一种结合模拟和贝叶斯推断的统一方法,为蛋白质 G 和 L 及其突变体的折叠机制提供原子细节。尽管蛋白质 G 和 L 的序列相似性较低,但它们的折叠途径不同,但它们却折叠成相似的拓扑结构。蛋白质 G 的快速折叠重新设计 NuG2 改变了折叠途径,并通过与蛋白质 L 相似的途径折叠。蛋白质 L 的重新设计也导致折叠速度加快,同时保留了原始的折叠途径。我们的贝叶斯推断方法从所有系统开始都是相同的,并正确识别了四个蛋白质中的每一个的折叠机制,这是力场和采样策略的成功。该方法计算效率高,并正确识别折叠途径中的 TSE 和中间结构,与实验结果吻合良好。我们通过使用两种在计算成本和可解释性上不同的正交方法来补充我们的发现。自适应采样 MD 结合马尔可夫状态模型提供了一个动力学模型,该模型证实了蛋白质 G 及其突变体更复杂的折叠机制。最后,一种使用 AlphaFold 的新片段分解方法确定了二级结构元件组合的偏好,这些组合遵循折叠途径中观察到的事件顺序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验