Suppr超能文献

阿尔法折叠2揭示了一些蛋白质折叠原理。

AlphaFold2 some protein folding principles.

作者信息

Chang Liwei, Perez Alberto

机构信息

Department of Chemistry, University of Florida, Gainesville & 32611, United States.

出版信息

bioRxiv. 2024 Aug 26:2024.08.25.609581. doi: 10.1101/2024.08.25.609581.

Abstract

AlphaFold2 (AF2) has revolutionized protein structure prediction. However, a common confusion lies in equating the problem with the . The former provides a static structure, while the latter explains the dynamic folding pathway to that structure. We challenge the current and advocate that AF2 has indeed learned some protein folding principles, despite being designed for structure prediction. AF2's high-dimensional parameters encode an imperfect biophysical scoring function. Typically, AF2 uses multiple sequence alignments (MSAs) to guide the search within a narrow region of its learned surface. In our study, we operate AF2 without MSAs or initial templates, forcing it to sample its entire energy landscape - more akin to an approach. Among over 7,000 proteins, a fraction fold using sequence alone, highlighting the smoothness of AF2's learned energy surface. Additionally, by combining recycling and iterative predictions, we discover multiple AF2 intermediate structures in good agreement with known experimental data. AF2 appears to follow a "local first, global later" folding mechanism. For designed proteins with more optimized local interactions, AF2's energy landscape is too smooth to detect intermediates even when it should. Our current work sheds new light on what AF2 has learned and opens exciting possibilities to advance our understanding of protein folding and for experimental discovery of folding intermediates.

摘要

AlphaFold2(AF2)彻底改变了蛋白质结构预测。然而,一个常见的混淆在于将这个问题与[此处原文缺失相关内容]等同起来。前者提供一个静态结构,而后者解释通向该结构的动态折叠途径。我们对当前的[此处原文缺失相关内容]提出质疑,并主张AF2确实学到了一些蛋白质折叠原理,尽管它是为结构预测而设计的。AF2的高维参数编码了一个不完美的生物物理评分函数。通常,AF2使用多序列比对(MSA)来在其学习表面的狭窄区域内引导搜索。在我们的研究中,我们在没有MSA或初始模板的情况下运行AF2,迫使它对其整个能量景观进行采样——更类似于一种[此处原文缺失相关内容]方法。在7000多种蛋白质中,有一部分仅使用序列就能折叠,这突出了AF2学习到的能量表面的平滑性。此外,通过结合循环和迭代预测,我们发现了多个与已知实验数据高度一致的AF2中间结构。AF2似乎遵循一种“先局部,后全局”的折叠机制。对于具有更优化局部相互作用的设计蛋白质,即使在应该检测到中间体的情况下,AF2的能量景观也过于平滑而无法检测到。我们目前的工作为AF2学到了什么提供了新的见解,并为推进我们对蛋白质折叠的理解以及实验发现折叠中间体开辟了令人兴奋的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecfd/11383045/ce52c3f86a35/nihpp-2024.08.25.609581v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验