Department of Chemistry, Quantum theory project, University of Florida, Gainesville, FL 32611, USA.
Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
Nucleic Acids Res. 2023 Feb 28;51(4):1625-1636. doi: 10.1093/nar/gkad013.
Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein-DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein-DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein-DNA interactions).
结构蛋白、调控蛋白和酶蛋白与 DNA 相互作用以维持健康和功能正常的基因组。然而,我们对蛋白质与 DNA 相互作用的结构理解是有限的。我们提出了 MELD-DNA,这是一种预测蛋白质-DNA 复合物结构的新计算方法。该方法通过贝叶斯推理将分子动力学模拟与一般知识或实验信息相结合。物理模型对结合所需的序列依赖性和构象变化敏感,而信息则加速了结合构象的采样。MELD-DNA 可以:(i) 采样多个结合模式;(ii) 从集合中识别首选的结合模式;(iii) 提供 DNA 序列之间的定性结合偏好。我们首先在 15 个蛋白质-DNA 复合物数据集上评估性能,并将其与最先进的方法进行比较。此外,对于三个选定的复合物,我们展示了 MELD 预测中结合的序列依赖性效应。我们希望本文提出的结果,以及免费提供的软件,将对结构生物学(通过补充 DNA 结构数据库)和分子识别(通过为控制蛋白质-DNA 相互作用的方面提供新的见解)产生影响。