Suppr超能文献

利用先进的随机森林方法进行药物敏感性预测的同时回归和分类。

Simultaneous regression and classification for drug sensitivity prediction using an advanced random forest method.

机构信息

Center for Bioinformatics, Saarland University, Saarland Informatics Campus (E2.1), 66123, Saarbrücken, Saarland, Germany.

出版信息

Sci Rep. 2022 Aug 5;12(1):13458. doi: 10.1038/s41598-022-17609-x.

Abstract

Machine learning methods trained on cancer cell line panels are intensively studied for the prediction of optimal anti-cancer therapies. While classification approaches distinguish effective from ineffective drugs, regression approaches aim to quantify the degree of drug effectiveness. However, the high specificity of most anti-cancer drugs induces a skewed distribution of drug response values in favor of the more drug-resistant cell lines, negatively affecting the classification performance (class imbalance) and regression performance (regression imbalance) for the sensitive cell lines. Here, we present a novel approach called SimultAneoUs Regression and classificatiON Random Forests (SAURON-RF) based on the idea of performing a joint regression and classification analysis. We demonstrate that SAURON-RF improves the classification and regression performance for the sensitive cell lines at the expense of a moderate loss for the resistant ones. Furthermore, our results show that simultaneous classification and regression can be superior to regression or classification alone.

摘要

基于癌细胞系面板训练的机器学习方法被广泛研究,用于预测最佳的抗癌疗法。分类方法旨在区分有效和无效药物,而回归方法则旨在量化药物有效性的程度。然而,大多数抗癌药物的高特异性导致药物反应值呈偏态分布,有利于更耐药的细胞系,这对敏感细胞系的分类性能(类不平衡)和回归性能(回归不平衡)产生负面影响。在这里,我们提出了一种称为 SimultAneoUs Regression and classificatiON Random Forests (SAURON-RF) 的新方法,该方法基于联合进行回归和分类分析的思想。我们证明,SAURON-RF 可以提高敏感细胞系的分类和回归性能,而对耐药细胞系的影响适中。此外,我们的结果表明,同时进行分类和回归可以优于单独进行回归或分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验