Suppr超能文献

可靠的抗癌药物敏感性预测和优先级排序。

Reliable anti-cancer drug sensitivity prediction and prioritization.

机构信息

Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, 66123, Saarbrücken, Saarland, Germany.

Center for Bioinformatics, Chair for Data Driven Drug Design, Saarland Informatics Campus (E2.1) Saarland University, Campus, 66123, Saarbrücken, Saarland, Germany.

出版信息

Sci Rep. 2024 May 29;14(1):12303. doi: 10.1038/s41598-024-62956-6.

Abstract

The application of machine learning (ML) to solve real-world problems does not only bear great potential but also high risk. One fundamental challenge in risk mitigation is to ensure the reliability of the ML predictions, i.e., the model error should be minimized, and the prediction uncertainty should be estimated. Especially for medical applications, the importance of reliable predictions can not be understated. Here, we address this challenge for anti-cancer drug sensitivity prediction and prioritization. To this end, we present a novel drug sensitivity prediction and prioritization approach guaranteeing user-specified certainty levels. The developed conformal prediction approach is applicable to classification, regression, and simultaneous regression and classification. Additionally, we propose a novel drug sensitivity measure that is based on clinically relevant drug concentrations and enables a straightforward prioritization of drugs for a given cancer sample.

摘要

机器学习 (ML) 在解决实际问题中的应用不仅具有巨大的潜力,而且还具有很高的风险。降低风险的一个基本挑战是确保 ML 预测的可靠性,即应最小化模型误差,并估计预测不确定性。特别是对于医疗应用,可靠预测的重要性怎么强调都不为过。在这里,我们针对抗癌药物敏感性预测和优先级排序来解决这个挑战。为此,我们提出了一种新的保证用户指定置信水平的药物敏感性预测和优先级排序方法。所开发的保形预测方法适用于分类、回归和同时进行的回归和分类。此外,我们提出了一种新的药物敏感性度量,它基于临床相关的药物浓度,并能够直接对给定癌症样本中的药物进行优先级排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f88/11137046/7f373038f541/41598_2024_62956_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验