Suppr超能文献

利用遥感数据进行集合平均,以模拟南非稀疏监测地区的时空 PM 浓度。

Ensemble averaging using remote sensing data to model spatiotemporal PM concentrations in sparsely monitored South Africa.

机构信息

Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Environ Pollut. 2022 Oct 1;310:119883. doi: 10.1016/j.envpol.2022.119883. Epub 2022 Aug 3.

Abstract

There is a paucity of air quality data in sub-Saharan African countries to inform science driven air quality management and epidemiological studies. We investigated the use of available remote-sensing aerosol optical depth (AOD) data to develop spatially and temporally resolved models to predict daily particulate matter (PM) concentrations across four provinces of South Africa (Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) for the year 2016 in a two-staged approach. In stage 1, a Random Forest (RF) model was used to impute Multiangle Implementation of Atmospheric Correction AOD data for days where it was missing. In stage 2, the machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to model the relationship between ground-monitored PM data, AOD and other spatial and temporal predictors. These were subsequently combined in an ensemble model to predict daily PM concentrations at 1 km × 1 km spatial resolution across the four provinces. An out-of-bag R of 0.96 was achieved for the first stage model. The stage 2 cross-validated (CV) ensemble model captured 0.84 variability in ground-monitored PM with a spatial CV R of 0.48 and temporal CV R of 0.80. The stage 2 model indicated an optimal performance of the daily predictions when aggregated to monthly and annual means. Our results suggest that a combination of remote sensing data, chemical transport model estimates and other spatiotemporal predictors has the potential to improve air quality exposure data in South Africa's major industrial provinces. In particular, the use of a combined ensemble approach was found to be useful for this area with limited availability of air pollution ground monitoring data.

摘要

撒哈拉以南非洲国家的空气质量数据很少,无法为科学驱动的空气质量管理和流行病学研究提供信息。我们研究了利用现有的遥感气溶胶光学深度(AOD)数据来开发时空分辨率模型,以预测南非四个省份(豪登省、姆普马兰加省、夸祖鲁-纳塔尔省和西开普省)2016 年的每日颗粒物(PM)浓度,采用两阶段方法。在第一阶段,随机森林(RF)模型用于估算多角度大气校正 AOD 数据中缺失的天数。在第二阶段,使用机器学习算法 RF、梯度提升和支持向量回归来模拟地面监测的 PM 数据、AOD 与其他时空预测因子之间的关系。然后,将这些关系组合到一个集成模型中,以预测四个省份的 1km×1km 空间分辨率的每日 PM 浓度。第一阶段模型的 OOB R 达到 0.96。第二阶段交叉验证(CV)集成模型以 0.84 的变异系数捕获了地面监测 PM 的 0.84 的变异系数,空间 CV R 为 0.48,时间 CV R 为 0.80。第二阶段模型表明,当汇总到每月和每年平均值时,每日预测的表现最佳。我们的结果表明,遥感数据、化学输送模型估计值和其他时空预测因子的组合有可能改善南非主要工业省份的空气质量暴露数据。特别是,对于空气污染地面监测数据有限的地区,使用组合集成方法被发现是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验