Suppr超能文献

组学分析表明,sdhC/D 作为大肠杆菌对抗生素早期反应的枢纽。

Omics analyses indicate sdhC/D act as hubs of early response of E. coli to antibiotics.

机构信息

College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.

Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang, 471023, China.

出版信息

Arch Microbiol. 2022 Aug 7;204(9):544. doi: 10.1007/s00203-022-03156-6.

Abstract

In recent years, the phenomenon of microbial resistance has become increasingly serious. The generation of reactive oxygen species (ROS) during the bactericidal process of antibiotics has attracted great interest, but little research has been done on the generation of ROS in the early stage of antibiotic action. We confirmed the rapid production of ROS by flow cytometry and transmission electron microscopy (TEM). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis indicated that the oxidative phosphorylation pathway is the key pathway of ROS production. Protein-protein interaction (PPI) network results indicate that sdhC/D are key genes in the oxidative phosphorylation pathway. The overexpression of sdhC/D resulted in a lower survival rate than the control strain after antibiotic treatments, which might be due to excess ROS induced by sdhC/D overexpression. The production of superoxide anion in the overexpress strain was significantly higher than that in the control strain, which further verified the importance of sdhC/D in the ROS release of bacteria. Current results showed that bacteria produce large amounts of ROS in the early stage of gentamicin and ampicillin action, and the regulation patterns of genes in the key pathway were consistent. sdhC/D are key genes in the early ROS release process of bacteria. Our study provides a basis for the search of ROS-related enhancers of antimicrobial action.

摘要

近年来,微生物耐药性现象日趋严重。抗生素杀菌过程中活性氧(ROS)的产生引起了极大关注,但抗生素作用早期 ROS 的产生研究较少。我们通过流式细胞术和透射电子显微镜(TEM)确认了 ROS 的快速产生。GO(基因本体论)和 KEGG(京都基因与基因组百科全书)富集分析表明,氧化磷酸化途径是 ROS 产生的关键途径。蛋白质-蛋白质相互作用(PPI)网络结果表明,sdhC/D 是氧化磷酸化途径中的关键基因。与对照菌株相比,sdhC/D 过表达后的抗生素处理存活率更低,这可能是由于 sdhC/D 过表达诱导了过量的 ROS。过表达菌株中超氧阴离子的产生明显高于对照菌株,这进一步验证了 sdhC/D 在细菌 ROS 释放中的重要性。目前的结果表明,在庆大霉素和氨苄青霉素作用的早期,细菌会产生大量的 ROS,并且关键途径中基因的调控模式是一致的。sdhC/D 是细菌早期 ROS 释放过程中的关键基因。我们的研究为寻找与 ROS 相关的抗菌作用增强剂提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验