Department of Genetics, State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia.
Department of Molecular Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6022-6027. doi: 10.1073/pnas.1703576114. Epub 2017 May 22.
Endogenous hydrogen sulfide (HS) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous HS in Cellular resistance to HO strongly depends on the activity of , a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders ∆ cells hypersensitive to HO Conversely, induction of chromosomal from a strong pLtetO-1 promoter (P -) renders ∆ cells fully resistant to HO Furthermore, the endogenous level of HS is reduced in ∆ or ∆ ∆ cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived HS protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of HS. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, HS production, and oxidative stress, in which 3MST protects against oxidative stress via l-cysteine utilization and HS-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.
内源性硫化氢 (HS) 使细菌对氧化应激具有高度抗性,但它的机制仍不清楚。在这里,我们报告 3-巯基丙酮酸硫转移酶 (3MST) 是内源性 HS 的主要来源,细胞对 HO 的抗性强烈依赖于编码 3MST 的基因的活性。铁摄取调节因子 (Fur) 的缺失使 ∆ 细胞对 HO 敏感;相反,强 pLtetO-1 启动子 (P -) 诱导染色体上的 表达使 ∆ 细胞对 HO 完全耐受;此外,在 ∆ 或 ∆ ∆ 细胞中 HS 的内源性水平降低,但在添加铁螯合剂二吡啶后得到恢复。使用对 DNA 损伤的全局反应的高度敏感报告基因 (SOS) 和 TUNEL 测定,我们表明 3MST 衍生的 HS 可保护染色体 DNA 免受氧化损伤。我们还表明,氧化应激对 CysB 调控子的诱导依赖于 3MST,而 CysB 调节的 l-胱氨酸转运蛋白 TcyP 在 3MST 介导的 HS 生成中起主要作用。这些发现使我们提出了一个模型来解释 l-半胱氨酸代谢、HS 生成和氧化应激之间的相互作用,其中 3MST 通过 l-半胱氨酸利用和 HS 介导的游离铁螯合来保护 免受氧化应激,游离铁是产生遗传毒性 Fenton 反应所必需的。