Suppr超能文献

宽复杂型心动过速鉴别工具提高了医生的诊断准确率。

Wide complex tachycardia discrimination tool improves physicians' diagnostic accuracy.

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America.

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America.

出版信息

J Electrocardiol. 2022 Sep-Oct;74:32-39. doi: 10.1016/j.jelectrocard.2022.07.070. Epub 2022 Aug 2.

Abstract

BACKGROUND

Timely and accurate discrimination of wide complex tachycardias (WCTs) into ventricular tachycardia (VT) or supraventricular WCT (SWCT) is critically important. Previously we developed and validated an automated VT Prediction Model that provides a VT probability estimate using the paired WCT and baseline 12-lead ECGs. Whether this model improves physicians' diagnostic accuracy has not been evaluated.

OBJECTIVE

We sought to determine whether the VT Prediction Model improves physicians' WCT differentiation accuracy.

METHODS

Over four consecutive days, nine physicians independently interpreted fifty WCT ECGs (25 VTs and 25 SWCTs confirmed by electrophysiological study) as either VT or SWCT. Day 1 used the WCT ECG only, Day 2 used the WCT and baseline ECG, Day 3 used the WCT ECG and the VT Prediction Model's estimation of VT probability, and Day 4 used the WCT ECG, baseline ECG, and the VT Prediction Model's estimation of VT probability.

RESULTS

Inclusion of the VT Prediction Model data increased diagnostic accuracy versus the WCT ECG alone (Day 3: 84.2% vs. Day 1: 68.7%, p 0.009) and WCT and baseline ECGs together (Day 3: 84.2% vs. Day 2: 76.4%, p 0.003). There was no further improvement of accuracy with addition of the baseline ECG comparison to the VT Prediction Model (Day 3: 84.2% vs. Day 4: 84.0%, p 0.928). Overall sensitivity (Day 3: 78.2% vs. Day 1: 67.6%, p 0.005) and specificity (Day 3: 90.2% vs. Day 1: 69.8%, p 0.016) for VT were superior after the addition of the VT Prediction Model.

CONCLUSION

The VT Prediction Model improves physician ECG diagnostic accuracy for discriminating WCTs.

摘要

背景

及时准确地区分宽复杂心动过速(WCT)为室性心动过速(VT)或室上性 WCT(SWCT)至关重要。此前,我们开发并验证了一种自动 VT 预测模型,该模型使用配对的 WCT 和基线 12 导联心电图提供 VT 概率估计。该模型是否能提高医生的诊断准确性尚未得到评估。

目的

我们旨在确定 VT 预测模型是否能提高医生对 WCT 区分的准确性。

方法

在连续四天内,九位医生独立分析了五十份 WCT 心电图(通过电生理研究证实了 25 份 VT 和 25 份 SWCT),将其分为 VT 或 SWCT。第一天仅使用 WCT 心电图,第二天使用 WCT 和基线心电图,第三天使用 WCT 心电图和 VT 预测模型的 VT 概率估计,第四天使用 WCT 心电图、基线心电图和 VT 预测模型的 VT 概率估计。

结果

与仅使用 WCT 心电图相比,纳入 VT 预测模型数据可提高诊断准确性(第 3 天:84.2%比第 1 天:68.7%,p 0.009),与 WCT 和基线心电图一起使用时(第 3 天:84.2%比第 2 天:76.4%,p 0.003)。与单独使用 VT 预测模型相比,添加基线心电图比较并未进一步提高准确性(第 3 天:84.2%比第 4 天:84.0%,p 0.928)。添加 VT 预测模型后,VT 的整体敏感性(第 3 天:78.2%比第 1 天:67.6%,p 0.005)和特异性(第 3 天:90.2%比第 1 天:69.8%,p 0.016)更高。

结论

VT 预测模型可提高医生心电图诊断区分 WCT 的准确性。

相似文献

1
Wide complex tachycardia discrimination tool improves physicians' diagnostic accuracy.
J Electrocardiol. 2022 Sep-Oct;74:32-39. doi: 10.1016/j.jelectrocard.2022.07.070. Epub 2022 Aug 2.
2
The VT Prediction Model: A simplified means to differentiate wide complex tachycardias.
J Cardiovasc Electrophysiol. 2020 Jan;31(1):185-195. doi: 10.1111/jce.14321. Epub 2019 Dec 25.
3
Direct Comparison of Methods to Differentiate Wide Complex Tachycardias: Novel Automated Algorithms Versus Manual ECG Interpretation Approaches.
Circ Arrhythm Electrophysiol. 2024 Aug;17(8):e012663. doi: 10.1161/CIRCEP.123.012663. Epub 2024 Jul 25.
4
The WCT Formula: A novel algorithm designed to automatically differentiate wide-complex tachycardias.
J Electrocardiol. 2019 May-Jun;54:61-68. doi: 10.1016/j.jelectrocard.2019.02.008. Epub 2019 Feb 25.
5
The WCT Formula II: An effective means to automatically differentiate wide complex tachycardias.
J Electrocardiol. 2020 Jul-Aug;61:121-129. doi: 10.1016/j.jelectrocard.2020.05.004. Epub 2020 May 16.
6
Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals.
Ann Noninvasive Electrocardiol. 2022 Jan;27(1):e12890. doi: 10.1111/anec.12890. Epub 2021 Sep 25.
7
Computerized electrocardiogram data transformation enables effective algorithmic differentiation of wide QRS complex tachycardias.
Ann Noninvasive Electrocardiol. 2023 Jan;28(1):e13018. doi: 10.1111/anec.13018. Epub 2022 Nov 21.
8
The emergence and destiny of automated methods to differentiate wide QRS complex tachycardias.
J Electrocardiol. 2023 Nov-Dec;81:44-50. doi: 10.1016/j.jelectrocard.2023.07.008. Epub 2023 Jul 23.
9
Electrocardiogram algorithms used to differentiate wide complex tachycardias demonstrate diagnostic limitations when applied by non-cardiologists.
J Electrocardiol. 2018 Nov-Dec;51(6):1103-1109. doi: 10.1016/j.jelectrocard.2018.09.015. Epub 2018 Oct 2.
10
Mayo Clinic VT calculator: A practical tool for accurate wide complex tachycardia differentiation.
Ann Noninvasive Electrocardiol. 2023 Nov;28(6):e13085. doi: 10.1111/anec.13085. Epub 2023 Sep 5.

引用本文的文献

1
Automated differentiation of wide QRS complex tachycardia using QRS complex polarity.
Commun Med (Lond). 2024 Dec 31;4(1):282. doi: 10.1038/s43856-024-00725-2.
2
Mayo Clinic VT calculator: A practical tool for accurate wide complex tachycardia differentiation.
Ann Noninvasive Electrocardiol. 2023 Nov;28(6):e13085. doi: 10.1111/anec.13085. Epub 2023 Sep 5.
3
Computerized electrocardiogram data transformation enables effective algorithmic differentiation of wide QRS complex tachycardias.
Ann Noninvasive Electrocardiol. 2023 Jan;28(1):e13018. doi: 10.1111/anec.13018. Epub 2022 Nov 21.

本文引用的文献

1
Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals.
Ann Noninvasive Electrocardiol. 2022 Jan;27(1):e12890. doi: 10.1111/anec.12890. Epub 2021 Sep 25.
2
The WCT Formula II: An effective means to automatically differentiate wide complex tachycardias.
J Electrocardiol. 2020 Jul-Aug;61:121-129. doi: 10.1016/j.jelectrocard.2020.05.004. Epub 2020 May 16.
3
Wide Complex Tachycardia Differentiation: A Reappraisal of the State-of-the-Art.
J Am Heart Assoc. 2020 Jun 2;9(11):e016598. doi: 10.1161/JAHA.120.016598. Epub 2020 May 19.
4
Wide complex tachycardia differentiation: An examination of traditional and contemporary approaches.
J Electrocardiol. 2020 May-Jun;60:203-208. doi: 10.1016/j.jelectrocard.2020.04.006. Epub 2020 Apr 13.
5
The ventricular tachycardia prediction model: Derivation and validation data.
Data Brief. 2020 Apr 21;30:105515. doi: 10.1016/j.dib.2020.105515. eCollection 2020 Jun.
6
The VT Prediction Model: A simplified means to differentiate wide complex tachycardias.
J Cardiovasc Electrophysiol. 2020 Jan;31(1):185-195. doi: 10.1111/jce.14321. Epub 2019 Dec 25.
7
Simple electrocardiographic criteria for rapid identification of wide QRS complex tachycardia: The new limb lead algorithm.
Heart Rhythm. 2020 Mar;17(3):431-438. doi: 10.1016/j.hrthm.2019.09.021. Epub 2019 Sep 20.
8
The WCT Formula: A novel algorithm designed to automatically differentiate wide-complex tachycardias.
J Electrocardiol. 2019 May-Jun;54:61-68. doi: 10.1016/j.jelectrocard.2019.02.008. Epub 2019 Feb 25.
9
Electrocardiogram algorithms used to differentiate wide complex tachycardias demonstrate diagnostic limitations when applied by non-cardiologists.
J Electrocardiol. 2018 Nov-Dec;51(6):1103-1109. doi: 10.1016/j.jelectrocard.2018.09.015. Epub 2018 Oct 2.
10
The ventricular tachycardia score: a novel approach to electrocardiographic diagnosis of ventricular tachycardia.
Europace. 2016 Apr;18(4):578-84. doi: 10.1093/europace/euv118. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验