May Adam M, Katbamna Bhavesh B, Shaikh Preet A, LoCoco Sarah, Deych Elena, Zhou Ruiwen, Liu Lei, Mikhova Krasimira M, Ghadban Rugheed, Cuculich Phillip S, Cooper Daniel H, Maddox Thomas M, Noseworthy Peter A, Kashou Anthony
Department of Medicine, Division of Cardiovascular Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
Division of Cardiovascular Diseases, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
Commun Med (Lond). 2024 Dec 31;4(1):282. doi: 10.1038/s43856-024-00725-2.
Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).
In a three-part study, we derive and validate machine learning (ML) models-logistic regression (LR), artificial neural network (ANN), Random Forests (RF), support vector machine (SVM), and ensemble learning (EL)-using engineered (WCT-PC and QRS-PS) and previously established WCT differentiation features. Part 1 uses WCT ECG measurements alone, Part 2 pairs WCT and baseline ECG features, and Part 3 combines all features used in Parts 1 and 2 RESULTS: Among 235 WCT patients (158 SWCT, 77 VT), 103 had gold standard diagnoses. Part 1 models achieved AUCs of 0.86-0.88 using WCT ECG features alone. Part 2 improved accuracy with paired ECGs (AUCs 0.90-0.93). Part 3 showed variable results (AUC 0.72-0.93), with RF and SVM performing best.
Incorporating engineered parameters related to QRS polarity direction and shifts can yield effective WCT differentiation, presenting a promising approach for automated CEI algorithms.
尽管有众多的12导联心电图(ECG)标准和算法,但宽QRS波群心动过速(WCT)鉴别为室性心动过速(VT)和室上性宽QRS波群心动过速(SWCT)仍然具有挑战性。利用计算机化心电图解读(CEI)测量和工程特征的自动化解决方案提供了提高诊断准确性的实用方法。我们提出了基于(i)WCT QRS极性方向(WCT极性代码[WCT-PC])和(ii)WCT与基线ECG之间的QRS极性变化(QRS极性变化[QRS-PS])的自动化算法。
在一项分为三个部分的研究中,我们使用工程特征(WCT-PC和QRS-PS)以及先前建立的WCT鉴别特征推导并验证机器学习(ML)模型——逻辑回归(LR)、人工神经网络(ANN)、随机森林(RF)、支持向量机(SVM)和集成学习(EL)。第1部分仅使用WCT ECG测量,第2部分将WCT和基线ECG特征配对,第3部分结合第1部分和第2部分中使用的所有特征。结果:在235例WCT患者(158例SWCT,77例VT)中,103例有金标准诊断。第1部分的模型仅使用WCT ECG特征时AUC为0.86 - 0.88。第2部分通过配对心电图提高了准确性(AUC为0.90 - 0.93)。第3部分显示结果各异(AUC为0.72 - 0.93),其中RF和SVM表现最佳。
纳入与QRS极性方向和变化相关的工程参数可实现有效的WCT鉴别,为自动化CEI算法提供了一种有前景的方法。