Department of Cardiovascular Medicine, Mayo Clinic, Minnesota, Rochester, USA.
Department of Medicine, Washington University School of Medicine, Missouri, St. Louis, USA.
Ann Noninvasive Electrocardiol. 2023 Jan;28(1):e13018. doi: 10.1111/anec.13018. Epub 2022 Nov 21.
Accurate automated wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) can be accomplished using calculations derived from computerized electrocardiogram (ECG) data of paired WCT and baseline ECGs.
Develop and trial novel WCT differentiation approaches for patients with and without a corresponding baseline ECG.
We developed and trialed WCT differentiation models comprised of novel and previously described parameters derived from WCT and baseline ECG data. In Part 1, a derivation cohort was used to evaluate five different classification models: logistic regression (LR), artificial neural network (ANN), Random Forests [RF], support vector machine (SVM), and ensemble learning (EL). In Part 2, a separate validation cohort was used to prospectively evaluate the performance of two LR models using parameters generated from the WCT ECG alone (Solo Model) and paired WCT and baseline ECGs (Paired Model).
Of the 421 patients of the derivation cohort (Part 1), a favorable area under the receiver operating characteristic curve (AUC) by all modeling subtypes: LR (0.96), ANN (0.96), RF (0.96), SVM (0.96), and EL (0.97). Of the 235 patients of the validation cohort (Part 2), the Solo Model and Paired Model achieved a favorable AUC for 103 patients with (Solo Model 0.87; Paired Model 0.95) and 132 patients without (Solo Model 0.84; Paired Model 0.95) a corroborating electrophysiology procedure or intracardiac device recording.
Accurate WCT differentiation may be accomplished using computerized data of (i) the WCT ECG alone and (ii) paired WCT and baseline ECGs.
通过使用源自配对宽 QRS 复合心动过速 (WCT) 和基线心电图 (ECG) 的计算机 ECG 数据的计算,可以准确地将宽 QRS 复合心动过速 (WCT) 自动区分成室性心动过速 (VT) 和室上性宽复合心动过速 (SWCT)。
为有和没有相应基线 ECG 的患者开发和试验新的 WCT 区分方法。
我们开发并试验了由源自 WCT 和基线 ECG 数据的新的和以前描述的参数组成的 WCT 区分模型。在第 1 部分中,使用推导队列评估了五种不同的分类模型:逻辑回归 (LR)、人工神经网络 (ANN)、随机森林 [RF]、支持向量机 (SVM) 和集成学习 (EL)。在第 2 部分中,使用来自单独 WCT ECG 的参数 (Solo 模型) 和配对 WCT 和基线 ECG (配对模型),前瞻性评估了两个 LR 模型的性能。
在推导队列的 421 例患者中 (第 1 部分),所有建模亚型的接受者操作特征曲线下面积 (AUC) 都较好:LR (0.96)、ANN (0.96)、RF (0.96)、SVM (0.96) 和 EL (0.97)。在验证队列的 235 例患者中 (第 2 部分),Solo 模型和配对模型对 103 例有 (Solo 模型 0.87;配对模型 0.95) 和 132 例没有 (Solo 模型 0.84;配对模型 0.95) 相符的电生理程序或心内装置记录的患者,取得了较好的 AUC。
通过使用 (i) 单独的 WCT ECG 和 (ii) 配对的 WCT 和基线 ECG 的计算机数据,可能实现准确的 WCT 区分。