Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey; NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri, 38280, Turkey.
Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, 38280, Turkey.
Anal Chim Acta. 2022 Aug 15;1221:340094. doi: 10.1016/j.aca.2022.340094. Epub 2022 Jun 15.
Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
多药耐药革兰氏阴性菌的最后一线抗生素是粘菌素,而耐粘菌素肺炎克雷伯菌(ColR-Kp)的存在导致其死亡率居高不下。因此,快速可靠的检测技术对于减少 ColR-Kp 感染和死亡率至关重要。在这项研究中,我们使用无标记表面增强拉曼散射(SERS)传感器和机器学习算法来区分耐粘菌素和敏感的肺炎克雷伯菌。将总共 16 株肺炎克雷伯菌在胰蛋白酶大豆肉汤(TSB)中孵育 4 小时。收集的耐粘菌素肺炎克雷伯菌和粘菌素敏感肺炎克雷伯菌(ColS-Kp)的 SERS 光谱显示出一些肉眼难以区分的光谱差异。为了从数据集中提取有区别的特征,分别使用自动编码器和主成分分析(PCA)进行非线性和线性特征提取。提取的特征被输入支持向量机(SVM)分类器以区分肺炎克雷伯菌菌株。使用每种特征提取技术提取的特征评估分类器性能。SVM 分类器与自动编码器提取特征(自动编码器-SVM)的分类结果优于与 PCA 提取特征(PCA-SVM)的 SVM 分类器。自动编码器-SVM 模型的准确性、灵敏度、特异性和曲线下面积(AUC)值分别为 94%、94.2%、93.8%和 0.98。此外,自动编码器-SVM 模型在准确性和 AUC 值方面的分类性能均明显优于 PCA-SVM。这些结果表明,与线性特征相比,非线性特征可以更具辨别力,以确定抗生素耐药和敏感细菌的 SERS 光谱数据。我们的方法学方法能够快速、高准确度地检测 ColR-Kp 和 ColS-Kp,表明这可能是限制粘菌素耐药性的有前途的工具。