Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
Methods Enzymol. 2022;672:29-54. doi: 10.1016/bs.mie.2022.03.066. Epub 2022 Apr 26.
Helicases function in most biological processes that utilize RNA or DNA nucleic acids including replication, recombination, repair, transcription, splicing, and translation. They are motor proteins that bind ATP and then catalyze hydrolysis to release energy which is transduced for conformational changes. Different conformations correspond to different steps in a process that results in movement of the enzyme along the nucleic acid track in a unidirectional manner. Some helicases such as DEAD-box helicases do not translocate, but these enzymes transduce chemical energy from ATP hydrolysis to unwind secondary structure in DNA or RNA. Some helicases function as monomers while others assemble into defined structures, either dimers or higher order oligomers. Dda helicase from bacteriophage T4 and NS3 helicase domain from the hepatitis C virus are examples of monomeric helicases. These helicases can bind to single-stranded DNA in a manner that appears like train engines on a track. When monomeric helicases align on DNA, the activity of the enzymes increases. Helicase activity can include the rate of duplex unwinding and the total number of base pairs melted during a single binding event or processivity. Dda and NS3h are considered as having low processivity, unwinding fewer than 50 base pairs per binding event. Here, we report fusing two molecules of NS3h molecules together through genetically linking the C-terminus of one molecule to the N-terminus of a second NS3h molecule. We observed increased processivity relative to NS3h possibly arising from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. The dimeric enzyme also binds DNA more like the full-length NS3 helicase. Finally, the dimer can displace streptavidin from biotin-labeled oligonucleotide, whereas monomeric NS3h cannot.
解旋酶在大多数利用 RNA 或 DNA 核酸的生物过程中发挥作用,包括复制、重组、修复、转录、剪接和翻译。它们是结合 ATP 的马达蛋白,然后催化水解以释放能量,从而引发构象变化。不同的构象对应于一个过程的不同步骤,导致酶沿核酸轨道单向移动。某些解旋酶,如 DEAD 盒解旋酶,不进行易位,但这些酶将 ATP 水解的化学能转化为解开 DNA 或 RNA 中的二级结构。一些解旋酶作为单体发挥作用,而另一些则组装成特定的结构,即二聚体或更高阶的寡聚体。来自噬菌体 T4 的 Dda 解旋酶和丙型肝炎病毒的 NS3 解旋酶结构域是单体解旋酶的例子。这些解旋酶可以以类似于轨道上的火车头的方式结合单链 DNA。当单体解旋酶在 DNA 上对齐时,酶的活性会增加。解旋酶的活性可以包括双链体解开的速度以及在单个结合事件或过程中融化的碱基对数。Dda 和 NS3h 被认为具有低的持续性,每个结合事件解开的碱基对少于 50 个。在这里,我们通过将一个分子的 C 末端与第二个 NS3h 分子的 N 末端遗传连接,将两个 NS3h 分子融合在一起。我们观察到与 NS3h 相比,持续性增加,这可能是由于至少一个解旋酶在解离之前完全解开 DNA 的概率增加所致。二聚体酶也更像全长 NS3 解旋酶一样结合 DNA。最后,二聚体可以从生物素标记的寡核苷酸上置换链霉亲和素,而单体 NS3h 则不能。