Suppr超能文献

新冠病毒病数据的机制性时空建模

A mechanistic spatio-temporal modeling of COVID-19 data.

作者信息

Briz-Redón Álvaro, Iftimi Adina, Mateu Jorge, Romero-García Carolina

机构信息

Department of Statistics and Operations Research, University of Valencia, Spain.

Statistics Office, City Council of Valencia, Spain.

出版信息

Biom J. 2023 Jan;65(1):e2100318. doi: 10.1002/bimj.202100318. Epub 2022 Aug 7.

Abstract

Understanding the evolution of an epidemic is essential to implement timely and efficient preventive measures. The availability of epidemiological data at a fine spatio-temporal scale is both novel and highly useful in this regard. Indeed, having geocoded data at the case level opens the door to analyze the spread of the disease on an individual basis, allowing the detection of specific outbreaks or, in general, of some interactions between cases that are not observable if aggregated data are used. Point processes are the natural tool to perform such analyses. We analyze a spatio-temporal point pattern of Coronavirus disease 2019 (COVID-19) cases detected in Valencia (Spain) during the first 11 months (February 2020 to January 2021) of the pandemic. In particular, we propose a mechanistic spatio-temporal model for the first-order intensity function of the point process. This model includes separate estimates of the overall temporal and spatial intensities of the model and a spatio-temporal interaction term. For the latter, while similar studies have considered different forms of this term solely based on the physical distances between the events, we have also incorporated mobility data to better capture the characteristics of human populations. The results suggest that there has only been a mild level of spatio-temporal interaction between cases in the study area, which to a large extent corresponds to people living in the same residential location. Extending our proposed model to larger areas could help us gain knowledge on the propagation of COVID-19 across cities with high mobility levels.

摘要

了解疫情的演变对于实施及时有效的预防措施至关重要。在精细的时空尺度上获取流行病学数据在这方面既新颖又非常有用。事实上,拥有病例层面的地理编码数据为基于个体分析疾病传播打开了大门,能够检测到特定的疫情爆发,或者一般来说,检测到如果使用汇总数据就无法观察到的病例之间的一些相互作用。点过程是进行此类分析的自然工具。我们分析了在疫情的前11个月(2020年2月至2021年1月)期间在西班牙巴伦西亚检测到的2019冠状病毒病(COVID-19)病例的时空点模式。特别是,我们为点过程的一阶强度函数提出了一个机械时空模型。该模型包括对模型整体时间和空间强度的单独估计以及一个时空相互作用项。对于后者,虽然类似的研究仅基于事件之间的物理距离考虑了该项的不同形式,但我们还纳入了流动性数据,以更好地捕捉人群的特征。结果表明,研究区域内病例之间的时空相互作用水平较低,这在很大程度上与居住在同一居住地点的人群相对应。将我们提出的模型扩展到更大的区域可以帮助我们了解COVID-19在高流动性城市中的传播情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验