Suppr超能文献

用于杂环编辑的单原子逻辑

Single-atom logic for heterocycle editing.

作者信息

Jurczyk Justin, Woo Jisoo, Kim Sojung F, Dherange Balu D, Sarpong Richmond, Levin Mark D

机构信息

Department of Chemistry, University of California, Berkeley, CA, USA.

Department of Chemistry, University of Chicago, Chicago, IL, USA.

出版信息

Nat Synth. 2022 May;1(5):352-364. doi: 10.1038/s44160-022-00052-1. Epub 2022 Apr 11.

Abstract

Medicinal chemistry continues to be impacted by new synthetic methods. Particularly sought after, especially at the drug discovery stage, is the ability to enact the desired chemical transformations in a concise and chemospecific fashion. To this end, the field of organic synthesis has become captivated by the idea of 'molecular editing'-to rapidly build onto, change or prune molecules one atom at a time using transformations that are mild and selective enough to be employed at the late stages of a synthetic sequence. In this Review, the definition and categorization of a particularly promising subclass of molecular editing reactions, termed 'single-atom skeletal editing', are proposed. Although skeletal editing applies to both cyclic and acyclic compounds, this Review focuses on heterocycles, both for their centrality in medicinal chemistry and for the definitional clarity afforded by a focus on ring systems. A classification system is presented by highlighting methods (both historically important examples and recent advances) that achieve such transformations, with the goal to spark interest and inspire further development in this growing field.

摘要

药物化学持续受到新合成方法的影响。在药物发现阶段尤其受到追捧的是能够以简洁且化学特异性的方式实现所需化学转化的能力。为此,有机合成领域已被“分子编辑”的理念所吸引——即利用足够温和且具有选择性、能够在合成序列后期应用的转化反应,一次一个原子地快速构建、改变或修剪分子。在本综述中,提出了一类特别有前景的分子编辑反应子类的定义和分类,这类反应被称为“单原子骨架编辑”。尽管骨架编辑适用于环状和非环状化合物,但本综述聚焦于杂环化合物,这既是因为它们在药物化学中的核心地位,也是因为专注于环系能带来定义上的清晰性。通过突出实现此类转化的方法(包括具有历史意义的重要实例和近期进展),呈现了一个分类系统,目的是激发人们对这个不断发展的领域的兴趣并推动其进一步发展。

相似文献

1
Single-atom logic for heterocycle editing.
Nat Synth. 2022 May;1(5):352-364. doi: 10.1038/s44160-022-00052-1. Epub 2022 Apr 11.
2
Revolutionizing Playing with Skeleton Atoms: Molecular Editing Surgery in Medicinal Chemistry.
Mini Rev Med Chem. 2025;25(3):190-195. doi: 10.2174/0113895575316229240611113946.
3
Diversification of Indoles and Pyrroles by Molecular Editing: New Frontiers in Heterocycle-to-Heterocycle Transmutation.
Chemistry. 2023 Apr 25;29(24):e202300096. doi: 10.1002/chem.202300096. Epub 2023 Mar 20.
4
N to N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing.
J Am Chem Soc. 2024 Feb 7;146(5):2950-2958. doi: 10.1021/jacs.3c11515. Epub 2024 Jan 29.
5
N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation.
Angew Chem Int Ed Engl. 2024 Mar 4;63(10):e202318613. doi: 10.1002/anie.202318613. Epub 2024 Jan 29.
6
The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery.
Chem Commun (Camb). 2021 Oct 19;57(83):10842-10866. doi: 10.1039/d1cc04083a.
7
Ynamides in ring forming transformations.
Acc Chem Res. 2014 Feb 18;47(2):560-78. doi: 10.1021/ar400193g. Epub 2013 Oct 28.
8
Skeletal Editing of Isatins for Heterocycle Molecular Diversity.
Chem Rec. 2024 Jun;24(6):e202400024. doi: 10.1002/tcr.202400024. Epub 2024 Jun 7.
9
Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry.
Acc Chem Res. 2021 Mar 16;54(6):1528-1541. doi: 10.1021/acs.accounts.1c00023. Epub 2021 Mar 4.
10

引用本文的文献

3
Cyano group translocation to alkenyl C(sp)-H site by radical cation catalysis.
Nat Commun. 2025 Aug 6;16(1):7251. doi: 10.1038/s41467-025-62585-1.
4
A database of steric and electronic properties of heteroaryl substituents.
Sci Data. 2025 Jul 30;12(1):1319. doi: 10.1038/s41597-025-05198-z.
5
Precise control of selective nitrogen atom insertion into five-membered cyclic β-ketoesters.
Nat Commun. 2025 Jul 19;16(1):6660. doi: 10.1038/s41467-025-62034-z.
6
Electrochemical Single-Carbon Insertion via Distonic Radical Cation Intermediates.
J Am Chem Soc. 2025 Jul 23;147(29):25635-25641. doi: 10.1021/jacs.5c06798. Epub 2025 Jul 14.
7
Rh-catalysed single-carbon insertion to 1,3-dienes.
Chem Sci. 2025 Jun 19. doi: 10.1039/d5sc03161c.
8
Chemoselective Difluoromethylation of Nucleosides.
Org Lett. 2025 Jun 27;27(25):6906-6910. doi: 10.1021/acs.orglett.5c02204. Epub 2025 Jun 17.
9
Light-Driven C(sp)-C(sp) Bond Functionalizations Enabled by the PCET Activation of Alcohol O-H Bonds.
Acc Chem Res. 2025 Jul 1;58(13):2061-2071. doi: 10.1021/acs.accounts.5c00246. Epub 2025 Jun 13.

本文引用的文献

1
Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines.
J Am Chem Soc. 2021 Nov 17;143(45):18864-18870. doi: 10.1021/jacs.1c10175. Epub 2021 Nov 8.
3
Photomediated ring contraction of saturated heterocycles.
Science. 2021 Aug 27;373(6558):1004-1012. doi: 10.1126/science.abi7183. Epub 2021 Aug 12.
4
Skeletal Editing-Nitrogen Deletion of Secondary Amines by Anomeric Amide Reagents.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19522-19524. doi: 10.1002/anie.202107490. Epub 2021 Aug 1.
5
Ten-Step Asymmetric Total Synthesis of (+)-Pepluanol A.
J Am Chem Soc. 2021 Aug 11;143(31):11934-11938. doi: 10.1021/jacs.1c05257. Epub 2021 Jul 29.
6
Sequential Ring-Opening and Ring-Closing Reactions for Converting -Substituted Pyridines into -Substituted Anilines.
Org Lett. 2021 Aug 6;23(15):6126-6130. doi: 10.1021/acs.orglett.1c02225. Epub 2021 Jul 27.
7
Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines.
J Am Chem Soc. 2021 Aug 4;143(30):11337-11344. doi: 10.1021/jacs.1c06287. Epub 2021 Jul 21.
8
Cleaving arene rings for acyclic alkenylnitrile synthesis.
Nature. 2021 Sep;597(7874):64-69. doi: 10.1038/s41586-021-03801-y. Epub 2021 Jul 19.
9
N-Atom Deletion in Nitrogen Heterocycles.
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20678-20683. doi: 10.1002/anie.202107356. Epub 2021 Aug 24.
10
Carbonyl-Olefin Metathesis.
Chem Rev. 2021 Aug 11;121(15):9359-9406. doi: 10.1021/acs.chemrev.0c01096. Epub 2021 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验