Suppr超能文献

电子健康记录中的变量能否在床边识别谵妄?

Can Variables From the Electronic Health Record Identify Delirium at Bedside?

作者信息

Khan Ariba, Heslin Kayla, Simpson Michelle, Malone Michael L

机构信息

Geriatric Medicine, Advocate Aurora Health, Milwaukee, WI.

University of Wisconsin School of Medicine and Public Health, Madison, WI.

出版信息

J Patient Cent Res Rev. 2022 Jul 18;9(3):174-180. doi: 10.17294/2330-0698.1890. eCollection 2022 Summer.

Abstract

Delirium, a common and serious disorder in older hospitalized patients, remains underrecognized. While several delirium predictive models have been developed, only a handful have focused on electronic health record (EHR) data. This prospective cohort study of older inpatients (≥65 years old) aimed to determine if variables within our health system's EHR could be used to identify delirium among hospitalized patients at the bedside. Trained researchers screened daily for delirium using the 3-minute diagnostic Confusion Assessment Method (3D-CAM). Patient demographic and clinical variables were extracted from the EHR. Among 408 participants, mean age was 75 years, 60.8% were female, and 82.6% were Black. Overall rate of delirium was 16.7%. Patients with delirium were older and more likely to have an infection diagnosis, prior dementia, higher Charlson comorbidity severity of illness score, lower Braden Scale score, and higher Morse Fall Scale score in the EHR (P<0.01 for all). On multivariable analysis, a prior diagnosis of dementia (odds ratio: 5.0, 95% CI: 2.5-10.3) and a Braden score of <18 (odds ratio: 2.8, 95% CI: 1.5-5.1) remained significantly associated with delirium among hospitalized patients. Further research in the development of an automated delirium prediction model is needed.

摘要

谵妄是老年住院患者中一种常见且严重的疾病,但仍未得到充分认识。虽然已经开发了几种谵妄预测模型,但只有少数模型关注电子健康记录(EHR)数据。这项针对老年住院患者(≥65岁)的前瞻性队列研究旨在确定我们医疗系统EHR中的变量是否可用于在床边识别住院患者中的谵妄。训练有素的研究人员使用3分钟诊断性意识模糊评估方法(3D-CAM)每天筛查谵妄。从EHR中提取患者的人口统计学和临床变量。在408名参与者中,平均年龄为75岁,60.8%为女性,82.6%为黑人。谵妄的总体发生率为16.7%。谵妄患者年龄更大,在EHR中更有可能有感染诊断、既往痴呆、更高的查尔森合并症严重程度评分、更低的布拉登量表评分和更高的莫尔斯跌倒量表评分(所有P<0.01)。在多变量分析中,既往痴呆诊断(比值比:5.0,95%置信区间:2.5-10.3)和布拉登评分<18(比值比:2.8,95%置信区间:1.5-5.1)在住院患者中仍与谵妄显著相关。需要进一步研究开发自动谵妄预测模型。

相似文献

1
Can Variables From the Electronic Health Record Identify Delirium at Bedside?电子健康记录中的变量能否在床边识别谵妄?
J Patient Cent Res Rev. 2022 Jul 18;9(3):174-180. doi: 10.17294/2330-0698.1890. eCollection 2022 Summer.
10
Development and validation of a delirium predictive score in older people.老年人谵妄预测评分的开发与验证
Age Ageing. 2014 May;43(3):346-51. doi: 10.1093/ageing/aft141. Epub 2013 Sep 24.

本文引用的文献

6
The financial and social costs of delirium.谵妄的经济和社会成本。
Eur Geriatr Med. 2020 Feb;11(1):105-112. doi: 10.1007/s41999-019-00257-2. Epub 2019 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验