Suppr超能文献

基于机器学习模型和术前电子健康记录数据预测术后谵妄。

Postoperative delirium prediction using machine learning models and preoperative electronic health record data.

机构信息

Department of Anesthesia and Perioperative Care, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143, USA.

Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA.

出版信息

BMC Anesthesiol. 2022 Jan 3;22(1):8. doi: 10.1186/s12871-021-01543-y.

Abstract

BACKGROUND

Accurate, pragmatic risk stratification for postoperative delirium (POD) is necessary to target preventative resources toward high-risk patients. Machine learning (ML) offers a novel approach to leveraging electronic health record (EHR) data for POD prediction. We sought to develop and internally validate a ML-derived POD risk prediction model using preoperative risk features, and to compare its performance to models developed with traditional logistic regression.

METHODS

This was a retrospective analysis of preoperative EHR data from 24,885 adults undergoing a procedure requiring anesthesia care, recovering in the main post-anesthesia care unit, and staying in the hospital at least overnight between December 2016 and December 2019 at either of two hospitals in a tertiary care health system. One hundred fifteen preoperative risk features including demographics, comorbidities, nursing assessments, surgery type, and other preoperative EHR data were used to predict postoperative delirium (POD), defined as any instance of Nursing Delirium Screening Scale ≥2 or positive Confusion Assessment Method for the Intensive Care Unit within the first 7 postoperative days. Two ML models (Neural Network and XGBoost), two traditional logistic regression models ("clinician-guided" and "ML hybrid"), and a previously described delirium risk stratification tool (AWOL-S) were evaluated using the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive likelihood ratio, and positive predictive value. Model calibration was assessed with a calibration curve. Patients with no POD assessments charted or at least 20% of input variables missing were excluded.

RESULTS

POD incidence was 5.3%. The AUC-ROC for Neural Net was 0.841 [95% CI 0. 816-0.863] and for XGBoost was 0.851 [95% CI 0.827-0.874], which was significantly better than the clinician-guided (AUC-ROC 0.763 [0.734-0.793], p < 0.001) and ML hybrid (AUC-ROC 0.824 [0.800-0.849], p < 0.001) regression models and AWOL-S (AUC-ROC 0.762 [95% CI 0.713-0.812], p < 0.001). Neural Net, XGBoost, and ML hybrid models demonstrated excellent calibration, while calibration of the clinician-guided and AWOL-S models was moderate; they tended to overestimate delirium risk in those already at highest risk.

CONCLUSION

Using pragmatically collected EHR data, two ML models predicted POD in a broad perioperative population with high discrimination. Optimal application of the models would provide automated, real-time delirium risk stratification to improve perioperative management of surgical patients at risk for POD.

摘要

背景

为了有针对性地将预防资源用于高危患者,需要对术后谵妄(POD)进行准确、务实的风险分层。机器学习(ML)为利用电子健康记录(EHR)数据进行 POD 预测提供了一种新方法。我们试图开发并内部验证一个使用术前风险特征的基于 ML 的 POD 风险预测模型,并将其性能与使用传统逻辑回归开发的模型进行比较。

方法

这是对 2016 年 12 月至 2019 年 12 月期间在一家三级保健系统的两家医院接受需要麻醉护理、在主要麻醉后护理单元恢复和至少住院过夜的程序的 24885 名成年人的术前 EHR 数据进行的回顾性分析。使用 115 个术前风险特征,包括人口统计学、合并症、护理评估、手术类型和其他术前 EHR 数据,以预测术后谵妄(POD),定义为术后第 1 至 7 天内任何一次护理谵妄筛查量表≥2 或重症监护病房意识评估阳性。使用接收器操作特征曲线(AUROC)下面积、敏感性、特异性、阳性似然比和阳性预测值评估两种 ML 模型(神经网络和 XGBoost)、两种传统逻辑回归模型(“临床医生指导”和“ML 混合”)和一种先前描述的谵妄风险分层工具(AWOL-S)。使用校准曲线评估模型校准。排除无 POD 评估图表或至少 20%输入变量缺失的患者。

结果

POD 发生率为 5.3%。神经网络的 AUROC 为 0.841[95%CI 0.816-0.863],XGBoost 的 AUROC 为 0.851[95%CI 0.827-0.874],明显优于临床医生指导(AUROC 0.763[0.734-0.793],p<0.001)和 ML 混合(AUROC 0.824[0.800-0.849],p<0.001)回归模型和 AWOL-S(AUROC 0.762[95%CI 0.713-0.812],p<0.001)。神经网络、XGBoost 和 ML 混合模型表现出出色的校准,而临床医生指导和 AWOL-S 模型的校准为中度;它们往往高估了已经处于最高风险的患者的谵妄风险。

结论

使用实用收集的 EHR 数据,两种 ML 模型在广泛的围手术期人群中预测 POD 具有较高的区分度。模型的最佳应用将提供自动化、实时的谵妄风险分层,以改善 POD 高危手术患者的围手术期管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a7/8722098/ec34eba11f3f/12871_2021_1543_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验