Mosquera Orgueira Adrián, González Pérez Marta Sonia, Díaz Arias José Ángel, Antelo Rodríguez Beatriz, Mateos María-Victoria
Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, Santiago de Compostela, Spain.
Hemasphere. 2022 Aug 2;6(8):e760. doi: 10.1097/HS9.0000000000000760. eCollection 2022 Aug.
A growing need to evaluate risk-adapted treatments in multiple myeloma (MM) exists. Several clinical and molecular scores have been developed in the last decades, which individually explain some of the variability in the heterogeneous clinical behavior of this neoplasm. Recently, we presented Iacobus-50 (IAC-50), which is a machine learning-based survival model based on clinical, biochemical, and genomic data capable of risk-stratifying newly diagnosed MM patients and predicting the optimal upfront treatment scheme. In the present study, we evaluated the prognostic value of the IAC-50 gene expression signature in an external cohort composed of patients from the Total Therapy trials 3, 4, and 5. The prognostic value of IAC-50 was validated, and additionally we observed a better performance in terms of progression-free survival and overall survival prediction compared with the UAMS70 gene expression signature. The combination of the IAC-50 gene expression signature with traditional prognostic variables (International Staging System [ISS] score, baseline B2-microglobulin, and age) improved the performance well above the predictability of the ISS score. IAC-50 emerges as a powerful risk stratification model which might be considered for risk stratification in newly diagnosed myeloma patients, in the context of clinical trials but also in real life.
评估多发性骨髓瘤(MM)中风险适应性治疗的需求日益增长。在过去几十年中已经开发了几种临床和分子评分,它们各自解释了这种肿瘤异质性临床行为中的一些变异性。最近,我们提出了Iacobus-50(IAC-50),这是一种基于机器学习的生存模型,基于临床、生化和基因组数据,能够对新诊断的MM患者进行风险分层并预测最佳初始治疗方案。在本研究中,我们在一个由总治疗试验3、4和5的患者组成的外部队列中评估了IAC-50基因表达特征的预后价值。IAC-50的预后价值得到了验证,此外,与UAMS70基因表达特征相比,我们在无进展生存期和总生存期预测方面观察到了更好的表现。IAC-50基因表达特征与传统预后变量(国际分期系统[ISS]评分、基线β2-微球蛋白和年龄)的组合显著提高了预测性能,远超ISS评分的可预测性。IAC-50成为一个强大的风险分层模型,在临床试验背景下以及现实生活中,新诊断的骨髓瘤患者的风险分层中可能会被考虑。