Cerutti S, Baselli G, Liberati D, Pavesi G
Biol Cybern. 1987;56(2-3):111-20. doi: 10.1007/BF00317986.
An original method is presented for the single sweep analysis of visual evoked potentials (VEP's). The introduced algorithm bases upon an AutoRegressive with eXogenous input (ARX) modeling. A Least Squares procedure estimates the coefficients of the model and allows to obtain a complete black-box description of the signal generation mechanism, besides providing a filtered version of the single sweep potential. The performance of the algorithm is verified on proper simulation tests and the experimental results put into evidence the noticeable improvement of signal-to-noise ratio with a consequent better recognition of the classical parameters of the peaks (latencies and amplitudes). The possibility of measuring these parameters on a single sweep basis enables to evaluate the dynamics of the Central Nervous System response during the entire course of the examination. A classification of the estimated evoked potentials in a small number of subsets, on the basis of their morphology, is also possible.
提出了一种用于视觉诱发电位(VEP)单次扫描分析的原创方法。所引入的算法基于带外生输入的自回归(ARX)建模。最小二乘法程序估计模型系数,除了提供单次扫描电位的滤波版本外,还能获得信号产生机制的完整黑箱描述。该算法的性能在适当的模拟测试中得到验证,实验结果表明信噪比有显著提高,从而能更好地识别峰值的经典参数(潜伏期和振幅)。在单次扫描基础上测量这些参数的可能性使得能够在整个检查过程中评估中枢神经系统反应的动态变化。还可以根据估计的诱发电位的形态将其分类为少数几个子集。