Suppr超能文献

通过参数识别模型对视觉诱发电位进行单次扫描分析。

Single sweep analysis of visual evoked potentials through a model of parametric identification.

作者信息

Cerutti S, Baselli G, Liberati D, Pavesi G

出版信息

Biol Cybern. 1987;56(2-3):111-20. doi: 10.1007/BF00317986.

Abstract

An original method is presented for the single sweep analysis of visual evoked potentials (VEP's). The introduced algorithm bases upon an AutoRegressive with eXogenous input (ARX) modeling. A Least Squares procedure estimates the coefficients of the model and allows to obtain a complete black-box description of the signal generation mechanism, besides providing a filtered version of the single sweep potential. The performance of the algorithm is verified on proper simulation tests and the experimental results put into evidence the noticeable improvement of signal-to-noise ratio with a consequent better recognition of the classical parameters of the peaks (latencies and amplitudes). The possibility of measuring these parameters on a single sweep basis enables to evaluate the dynamics of the Central Nervous System response during the entire course of the examination. A classification of the estimated evoked potentials in a small number of subsets, on the basis of their morphology, is also possible.

摘要

提出了一种用于视觉诱发电位(VEP)单次扫描分析的原创方法。所引入的算法基于带外生输入的自回归(ARX)建模。最小二乘法程序估计模型系数,除了提供单次扫描电位的滤波版本外,还能获得信号产生机制的完整黑箱描述。该算法的性能在适当的模拟测试中得到验证,实验结果表明信噪比有显著提高,从而能更好地识别峰值的经典参数(潜伏期和振幅)。在单次扫描基础上测量这些参数的可能性使得能够在整个检查过程中评估中枢神经系统反应的动态变化。还可以根据估计的诱发电位的形态将其分类为少数几个子集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验