Suppr超能文献

智能手机使用问题的日本年轻成年人网络分析。

A network analysis of problematic smartphone use in Japanese young adults.

机构信息

Department of Child and Adolescent Psychiatry, Tokiwa Child Development Center, Tokiwa Hospital, Miki, Japan.

Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan.

出版信息

PLoS One. 2022 Aug 8;17(8):e0272803. doi: 10.1371/journal.pone.0272803. eCollection 2022.

Abstract

BACKGROUND

We aimed to explore the overall network structure of problematic smartphone use symptoms assessed by smartphone addiction scale-short version (SAS-SV) and to identify which items could play important roles in the network.

METHODS

487 college and university students filled out the study questionnaire, including SAS-SV. We constructed a regularized partial correlation network among the 10 items of SAS-SV. We calculated three indices of node centrality: strength, closeness, and betweenness, to quantify the importance of each SAS-SV item.

RESULTS

We identified 34 edges in the estimated network. In the given network, one item pertaining to withdrawal symptom hadthe highest strength and high closeness centrality. Additionally, one item related to preoccupation was also found to have high centrality indices.

CONCLUSION

Our results indicating the central role of one withdrawal symptom and one preoccupation symptom in the symptom network of problematic smartphone use in young adults were in line with a previous study targeting school-age children. Longitudinal study designs are required to elicit the role of these central items on the formation and maintenance of this behavioral problem.

摘要

背景

本研究旨在探讨智能手机成瘾量表-短版(SAS-SV)评估的问题性智能手机使用症状的整体网络结构,并确定哪些项目在网络中可能发挥重要作用。

方法

487 名大学生填写了研究问卷,包括 SAS-SV。我们构建了 SAS-SV 的 10 个项目之间的正则化部分相关网络。我们计算了节点中心性的三个指标:强度、接近度和中间度,以量化每个 SAS-SV 项目的重要性。

结果

我们在估计的网络中确定了 34 条边。在给定的网络中,一个与戒断症状有关的项目具有最高的强度和高接近度中心性。此外,一个与专注有关的项目也被发现具有较高的中心性指数。

结论

我们的研究结果表明,在年轻人中,一个戒断症状和一个专注症状在问题性智能手机使用症状网络中起着核心作用,这与之前针对学龄儿童的研究结果一致。需要进行纵向研究设计来确定这些中心项目在形成和维持这种行为问题中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/374a/9359578/ae313336a362/pone.0272803.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验