Suppr超能文献

医学图像多病灶分割的先验注意网络。

Prior Attention Network for Multi-Lesion Segmentation in Medical Images.

出版信息

IEEE Trans Med Imaging. 2022 Dec;41(12):3812-3823. doi: 10.1109/TMI.2022.3197180. Epub 2022 Dec 2.

Abstract

The accurate segmentation of multiple types of lesions from adjacent tissues in medical images is significant in clinical practice. Convolutional neural networks (CNNs) based on the coarse-to-fine strategy have been widely used in this field. However, multi-lesion segmentation remains to be challenging due to the uncertainty in size, contrast, and high interclass similarity of tissues. In addition, the commonly adopted cascaded strategy is rather demanding in terms of hardware, which limits the potential of clinical deployment. To address the problems above, we propose a novel Prior Attention Network (PANet) that follows the coarse-to-fine strategy to perform multi-lesion segmentation in medical images. The proposed network achieves the two steps of segmentation in a single network by inserting a lesion-related spatial attention mechanism in the network. Further, we also propose the intermediate supervision strategy for generating lesion-related attention to acquire the regions of interest (ROIs), which accelerates the convergence and obviously improves the segmentation performance. We have investigated the proposed segmentation framework in two applications: 2D segmentation of multiple lung infections in lung CT slices and 3D segmentation of multiple lesions in brain MRIs. Experimental results show that in both 2D and 3D segmentation tasks our proposed network achieves better performance with less computational cost compared with cascaded networks. The proposed network can be regarded as a universal solution to multi-lesion segmentation in both 2D and 3D tasks. The source code is available at https://github.com/hsiangyuzhao/PANet.

摘要

医学图像中相邻组织中多种类型病变的精确分割在临床实践中具有重要意义。基于粗到精策略的卷积神经网络(CNN)已广泛应用于该领域。然而,由于组织的大小、对比度和高类间相似性的不确定性,多病变分割仍然具有挑战性。此外,常用的级联策略在硬件方面要求很高,这限制了其在临床部署中的潜力。为了解决上述问题,我们提出了一种新的基于先验注意力网络(PANet)的方法,该方法遵循粗到精的策略,在医学图像中进行多病变分割。所提出的网络通过在网络中插入与病变相关的空间注意机制,在单个网络中实现了分割的两个步骤。此外,我们还提出了中间监督策略,用于生成与病变相关的注意,以获取感兴趣区域(ROI),这加速了收敛并明显提高了分割性能。我们已经在两个应用中研究了所提出的分割框架:肺部 CT 切片中多个肺部感染的 2D 分割和脑部 MRI 中多个病变的 3D 分割。实验结果表明,在所提出的网络在 2D 和 3D 分割任务中均取得了比级联网络更好的性能,且计算成本更低。所提出的网络可以被视为 2D 和 3D 任务中多病变分割的通用解决方案。源代码可在 https://github.com/hsiangyuzhao/PANet 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验