Suppr超能文献

基于自适应图学习的半监督多视图特征选择

Semi-Supervised Multiview Feature Selection With Adaptive Graph Learning.

作者信息

Jiang Bingbing, Wu Xingyu, Zhou Xiren, Liu Yi, Cohn Anthony G, Sheng Weiguo, Chen Huanhuan

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3615-3629. doi: 10.1109/TNNLS.2022.3194957. Epub 2024 Feb 29.

Abstract

As data sources become ever more numerous with increased feature dimensionality, feature selection for multiview data has become an important technique in machine learning. Semi-supervised multiview feature selection (SMFS) focuses on the problem of how to obtain a discriminative feature subset from heterogeneous feature spaces in the case of abundant unlabeled data with little labeled data. Most existing methods suffer from unreliable similarity graph structure across different views since they separate the graph construction from feature selection and use the fixed graphs that are susceptible to noisy features. Furthermore, they directly concatenate multiple feature projections for feature selection, neglecting the contribution diversity among projections. To alleviate these problems, we present an SMFS to simultaneously select informative features and learn a unified graph through the data fusion from aspects of feature projection and similarity graph. Specifically, SMFS adaptively weights different feature projections and flexibly fuses them to form a joint weighted projection, preserving the complementarity and consensus of the original views. Moreover, an implicit graph fusion is devised to dynamically learn a compatible graph across views according to the similarity structure in the learned projection subspace, where the undesirable effects of noisy features are largely alleviated. A convergent method is derived to iteratively optimize SMFS. Experiments on various datasets validate the effectiveness and superiority of SMFS over state-of-the-art methods.

摘要

随着数据源随着特征维度的增加而变得越来越多,多视图数据的特征选择已成为机器学习中的一项重要技术。半监督多视图特征选择(SMFS)关注的问题是,在未标记数据丰富而标记数据很少的情况下,如何从异构特征空间中获得一个有判别力的特征子集。大多数现有方法存在跨不同视图的相似性图结构不可靠的问题,因为它们将图构建与特征选择分开,并使用容易受到噪声特征影响的固定图。此外,它们直接连接多个特征投影进行特征选择,而忽略了投影之间的贡献多样性。为了缓解这些问题,我们提出了一种SMFS,通过从特征投影和相似性图方面进行数据融合,同时选择信息特征并学习一个统一的图。具体来说,SMFS自适应地加权不同的特征投影,并灵活地融合它们以形成联合加权投影,保留原始视图的互补性和一致性。此外,设计了一种隐式图融合,根据所学投影子空间中的相似性结构动态学习跨视图的兼容图,在很大程度上减轻了噪声特征的不良影响。推导了一种收敛方法来迭代优化SMFS。在各种数据集上的实验验证了SMFS相对于现有方法的有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验