Suppr超能文献

基于图共识项的多视图学习统一框架

A Unified Framework Based on Graph Consensus Term for Multiview Learning.

作者信息

Meng Xiangzhu, Feng Lin, Guo Chonghui, Wang Huibing, Wu Shu

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3964-3977. doi: 10.1109/TNNLS.2022.3201498. Epub 2024 Feb 29.

Abstract

In recent years, multiview learning technologies have attracted a surge of interest in the machine learning domain. However, when facing complex and diverse applications, most multiview learning methods mainly focus on specific fields rather than provide a scalable and robust proposal for different tasks. Moreover, most conventional methods used in these tasks are based on single view, which cannot be readily extended into the multiview scenario. Therefore, how to provide an efficient and scalable multiview framework is very necessary yet full of challenges. Inspired by the fact that most of the existing single view algorithms are graph-based ones to learn the complex structures within given data, this article aims at leveraging most existing graph embedding works into one formula via introducing the graph consensus term and proposes a unified and scalable multiview learning framework, termed graph consensus multiview framework (GCMF). GCMF attempts to make full advantage of graph-based works and rich information in the multiview data at the same time. On one hand, the proposed method explores the graph structure in each view independently to preserve the diversity property of graph embedding methods; on the other hand, learned graphs can be flexibly chosen to construct the graph consensus term, which can more stably explore the correlations among multiple views. To this end, GCMF can simultaneously take the diversity and complementary information among different views into consideration. To further facilitate related research, we provide an implementation of the multiview extension for locality linear embedding (LLE), named GCMF-LLE, which can be efficiently solved by applying the alternating optimization strategy. Empirical validations conducted on six benchmark datasets can show the effectiveness of our proposed method.

摘要

近年来,多视图学习技术在机器学习领域引起了广泛关注。然而,面对复杂多样的应用时,大多数多视图学习方法主要聚焦于特定领域,而非为不同任务提供可扩展且稳健的方案。此外,这些任务中使用的大多数传统方法基于单视图,无法轻易扩展到多视图场景。因此,如何提供一个高效且可扩展的多视图框架非常必要但充满挑战。受现有大多数单视图算法是基于图来学习给定数据内复杂结构这一事实的启发,本文旨在通过引入图共识项将大多数现有的图嵌入工作整合到一个公式中,并提出一个统一且可扩展的多视图学习框架,称为图共识多视图框架(GCMF)。GCMF试图同时充分利用基于图的工作和多视图数据中的丰富信息。一方面,所提出的方法独立探索每个视图中的图结构以保留图嵌入方法的多样性特性;另一方面,可以灵活选择学习到的图来构建图共识项,从而更稳定地探索多个视图之间的相关性。为此,GCMF可以同时考虑不同视图之间的多样性和互补信息。为了进一步促进相关研究,我们提供了局部线性嵌入(LLE)的多视图扩展实现,名为GCMF-LLE,它可以通过应用交替优化策略有效求解。在六个基准数据集上进行的实证验证可以表明我们所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验