Mitra Abhishek, Hermes Matthew R, Cho Minsik, Agarawal Valay, Gagliardi Laura
Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
J Phys Chem Lett. 2022 Aug 18;13(32):7483-7489. doi: 10.1021/acs.jpclett.2c01915. Epub 2022 Aug 8.
The adsorption of simple gas molecules to metal oxide surfaces is a primary step in many heterogeneous catalysis applications. Quantum chemical modeling of these reactions is a challenge in terms of both cost and accuracy, and quantum-embedding methods are promising, especially for localized chemical phenomena. In this work, we employ density matrix embedding theory (DMET) for periodic systems to calculate the adsorption energy of CO to the MgO(001) surface. Using coupled-cluster theory with single and double excitations and second-order Møller-Plesset perturbation theory as quantum chemical solvers, we perform calculations with embedding clusters up to 266 electrons in 306 orbitals, with the largest embedding models agreeing to within 1.2 kcal/mol of the non-embedding references. Moreover, we present a memory-efficient procedure of storing and manipulating electron repulsion integrals in the embedding space within the framework of periodic DMET.
简单气体分子在金属氧化物表面的吸附是许多多相催化应用中的首要步骤。这些反应的量子化学建模在成本和准确性方面都是一项挑战,而量子嵌入方法很有前景,特别是对于局部化学现象。在这项工作中,我们采用适用于周期性体系的密度矩阵嵌入理论(DMET)来计算CO在MgO(001)表面的吸附能。使用含单双激发的耦合簇理论和二阶Møller-Plesset微扰理论作为量子化学求解器,我们在多达306个轨道中嵌入含266个电子的簇进行计算,最大的嵌入模型与非嵌入参考值的偏差在1.2 kcal/mol以内。此外,我们提出了一种在周期性DMET框架内存储和处理嵌入空间中电子排斥积分的内存高效方法。