Institute of Nano Science and Technology, Mohali-140306, India.
Department of Physics, SRM University - Andhra Pradesh, Amaravati 522240, India.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2204638119. doi: 10.1073/pnas.2204638119. Epub 2022 Aug 8.
The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber-Bosch process. However, the conventionally used aqueous electrolytes limit N solubility, leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein, we introduce an aqueous electrolyte (NaBF), which not only acts as an N-carrier in the medium but also works as a full-fledged "co-catalyst" along with our active material MnN to deliver a high yield of NH (328.59 μg h mg) at 0.0 V versus reversible hydrogen electrode. BF-induced charge polarization shifts the metal d-band center of the MnN unit close to the Fermi level, inviting N adsorption facilely. The Lewis acidity of the free BF molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N and its first protonation. This push-pull kind of electronic interaction has been confirmed from the change in d-band center values of the MnN site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Consequently, a high production rate of NH (2.45 × 10 mol s cm) was achieved, approaching the industrial scale where the source of NH was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N gas.
农业和运输燃料对氨的需求不断增长,促使研究人员开发可持续的电化学方法来环境合成氨,以克服能源密集型哈伯-博世工艺。然而,传统上使用的水溶液电解质限制了 N 的溶解度,导致在电化学氮还原反应(NRR)过程中催化剂附近的反应物分子不足。这无论催化剂的效率如何,都阻碍了氨的产率和生产速率。在此,我们引入了一种水溶液电解质(NaBF),它不仅在介质中充当 N 载体,而且与我们的活性材料 MnN 一起充当成熟的“助催化剂”,在 0.0 V 相对于可逆氢电极时可提供高 NH(328.59μg h mg)产率。BF 引起的电荷极化将 MnN 单元的金属 d 带中心移至费米能级附近,从而便于 N 吸附。游离 BF 分子的路易斯酸度进一步传播了它们在极化吸附 N 和其第一个质子化的 N≡N 键中的重要性。这种推拉式电子相互作用已从 MnN 位的 d 带中心值的变化以及我们的活性模型单元上的电荷密度分布得到证实,这足以降低 NRR 势控步骤的能量障碍。因此,实现了 NH 的高生产速率(2.45×10 mol s cm),接近工业规模,在该规模下对 NH 的来源进行了彻底研究并证实主要来自净化 N 气体的电化学还原。