Suppr超能文献

使用机器学习预测误诊的成人发病 1 型糖尿病。

Predicting misdiagnosed adult-onset type 1 diabetes using machine learning.

机构信息

Predictive Analytics, Real World Solutions, IQVIA, Wayne, PA, USA.

JDRF, New York, NY, USA.

出版信息

Diabetes Res Clin Pract. 2022 Sep;191:110029. doi: 10.1016/j.diabres.2022.110029. Epub 2022 Aug 5.

Abstract

AIMS

It is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.

METHODS

In this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.

RESULTS

The model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.

CONCLUSIONS

This algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.

摘要

目的

现在人们已经了解到,近一半的新诊断的 1 型糖尿病病例为成人发病。然而,在成年人中,1 型和 2 型糖尿病在临床上很难最初区分,这可能导致治疗效果不佳。在这项研究中,开发了一种机器学习模型,以识别被误诊为 2 型糖尿病的 1 型糖尿病患者。

方法

在这项回顾性研究中,开发了一种机器学习模型,以从先前诊断为 2 型糖尿病的患者人群中识别出被误诊的 1 型糖尿病患者。使用门诊电子病历(AEMR),从患者的病史中提取了年龄、人口统计学、风险因素、症状、治疗、程序、生命体征或实验室结果等相关信息的特征。

结果

该模型确定了年龄、BMI/体重、治疗史和 HbA1c/血糖值是误诊的主要预测因素。在召回率较低(10%)的情况下,该模型的准确率为 17%,而在 AEMR 中首次诊断 2 型糖尿病时,误诊的发生率不到 1%。

结论

该算法具有转化为筛查指南或直接嵌入电子病历系统的临床决策支持工具的潜力,以减少成人发病的 1 型糖尿病的误诊,并在一开始就实施有效的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db4a/10631495/bf93c0ccdd31/nihms-1903194-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验