Suppr超能文献

自然语言处理方法评估诊断错误及安全学习系统病例回顾数据分析:回顾性队列研究。

Evaluation of a Natural Language Processing Approach to Identify Diagnostic Errors and Analysis of Safety Learning System Case Review Data: Retrospective Cohort Study.

机构信息

Center for Biostatistics, Informatics, and Data Science, MedStar Health Research Institute, Washington, DC, United States.

Department of Emergency Medicine, Georgetown University School of Medicine, Washington, DC, United States.

出版信息

J Med Internet Res. 2024 Aug 26;26:e50935. doi: 10.2196/50935.

Abstract

BACKGROUND

Diagnostic errors are an underappreciated cause of preventable mortality in hospitals and pose a risk for severe patient harm and increase hospital length of stay.

OBJECTIVE

This study aims to explore the potential of machine learning and natural language processing techniques in improving diagnostic safety surveillance. We conducted a rigorous evaluation of the feasibility and potential to use electronic health records clinical notes and existing case review data.

METHODS

Safety Learning System case review data from 1 large health system composed of 10 hospitals in the mid-Atlantic region of the United States from February 2016 to September 2021 were analyzed. The case review outcome included opportunities for improvement including diagnostic opportunities for improvement. To supplement case review data, electronic health record clinical notes were extracted and analyzed. A simple logistic regression model along with 3 forms of logistic regression models (ie, Least Absolute Shrinkage and Selection Operator, Ridge, and Elastic Net) with regularization functions was trained on this data to compare classification performances in classifying patients who experienced diagnostic errors during hospitalization. Further, statistical tests were conducted to find significant differences between female and male patients who experienced diagnostic errors.

RESULTS

In total, 126 (7.4%) patients (of 1704) had been identified by case reviewers as having experienced at least 1 diagnostic error. Patients who had experienced diagnostic error were grouped by sex: 59 (7.1%) of the 830 women and 67 (7.7%) of the 874 men. Among the patients who experienced a diagnostic error, female patients were older (median 72, IQR 66-80 vs median 67, IQR 57-76; P=.02), had higher rates of being admitted through general or internal medicine (69.5% vs 47.8%; P=.01), lower rates of cardiovascular-related admitted diagnosis (11.9% vs 28.4%; P=.02), and lower rates of being admitted through neurology department (2.3% vs 13.4%; P=.04). The Ridge model achieved the highest area under the receiver operating characteristic curve (0.885), specificity (0.797), positive predictive value (PPV; 0.24), and F-score (0.369) in classifying patients who were at higher risk of diagnostic errors among hospitalized patients.

CONCLUSIONS

Our findings demonstrate that natural language processing can be a potential solution to more effectively identifying and selecting potential diagnostic error cases for review and therefore reducing the case review burden.

摘要

背景

诊断错误是医院中可预防死亡的一个被低估的原因,并且会对患者造成严重伤害并延长住院时间。

目的

本研究旨在探索机器学习和自然语言处理技术在提高诊断安全性监测方面的潜力。我们对使用电子健康记录临床记录和现有病例回顾数据的可行性和潜力进行了严格评估。

方法

对 2016 年 2 月至 2021 年 9 月期间来自美国中大西洋地区 10 家医院的 1 个大型医疗系统的安全学习系统病例回顾数据进行了分析。病例回顾结果包括改进机会,包括改进诊断机会。为了补充病例回顾数据,提取并分析了电子健康记录临床记录。基于此数据,使用简单逻辑回归模型和 3 种逻辑回归模型(即最小绝对收缩和选择算子、岭回归和弹性网络)与正则化函数进行训练,以比较在住院期间经历诊断错误的患者分类性能。此外,还进行了统计检验以发现经历诊断错误的女性和男性患者之间的显著差异。

结果

总共,有 126 名(7.4%)患者(1704 名患者中的 126 名)被病例审查员确定至少经历了 1 次诊断错误。经历诊断错误的患者按性别分组:女性 830 名患者中 59 名(7.1%),男性 874 名患者中 67 名(7.7%)。在经历诊断错误的患者中,女性患者年龄较大(中位数 72,IQR 66-80 与中位数 67,IQR 57-76;P=.02),通过普通内科或内科就诊的比例较高(69.5%与 47.8%;P=.01),心血管相关入院诊断的比例较低(11.9%与 28.4%;P=.02),通过神经内科就诊的比例较低(2.3%与 13.4%;P=.04)。岭回归模型在分类住院患者中诊断错误风险较高的患者方面取得了最高的受试者工作特征曲线下面积(0.885)、特异性(0.797)、阳性预测值(0.24)和 F 分数(0.369)。

结论

我们的研究结果表明,自然语言处理可以是一种潜在的解决方案,可更有效地识别和选择潜在的诊断错误病例进行审查,从而减轻病例审查负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2dc/11384169/7cff70a4b87a/jmir_v26i1e50935_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验