Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
Environ Pollut. 2022 Oct 1;310:119855. doi: 10.1016/j.envpol.2022.119855. Epub 2022 Aug 5.
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca, K, Na, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
硅通过植物根系中的 Lsi1 被动吸收,Lsi1 是水通道蛋白家族的一种流入转运体,以不带电荷的单硅酸形式被吸收。然后,Lsi2 主动将硅从根细胞中排出到木质部,然后由 Lsi6 将其输出,用于硅的分配和积累到其他部位。最近,有人提出硅纳米颗粒(SiNPs)可能通过类似的途径被吸收和转运。SiNPs 随后引发一系列形态生理调整,通过调节许多光合作用基因和蛋白质以及光系统 I(PSI)和 PSII 组装的表达,改善植物生理学。随后光合作用性能和气孔行为的改善对应于更高的生长、发育和生产力。在许多情况下,SiNPs 通过改善植物水分状况、源库潜力、活性氧(ROS)代谢和酶谱,在胁迫环境中表现出保护作用。本综述全面讨论了 SiNPs 在作物改良方面的潜力,包括在最佳和非生物胁迫条件下,如盐度、干旱、温度、重金属和紫外线(UV)辐射。此外,在本综述的后面部分,我们认为,这些升级中的大多数可以通过 SiNPs 与植物激素、抗氧化剂和信号分子的复杂对应关系来解释。SiNPs 可以调节内源植物激素水平,如脱落酸(ABA)、生长素(IAA)、细胞分裂素(CKs)、乙烯(ET)、赤霉素(GA)和茉莉酸(JA)。改变的植物激素水平会影响不同器官和组织水平的植物生长、发育和生产力。同样,SiNPs 调节过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)和抗坏血酸-谷胱甘肽(AsA-GSH)循环的活性,从而提升防御系统。在细胞和亚细胞水平上,还解释了 SiNPs 与各种信号分子(如 Ca、K、Na、一氧化氮(NO)、ROS、可溶性糖和转录因子(TFs))的相互作用。