Suppr超能文献

多研究人群中平均因果效应的部分识别:合并孟德尔随机化研究的挑战。

Partial Identification of the Average Causal Effect in Multiple Study Populations: The Challenge of Combining Mendelian Randomization Studies.

机构信息

From the Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, the Netherlands.

CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MA.

出版信息

Epidemiology. 2023 Jan 1;34(1):20-28. doi: 10.1097/EDE.0000000000001526. Epub 2022 Aug 5.

Abstract

BACKGROUND

Researchers often use random-effects or fixed-effects meta-analysis to combine findings from multiple study populations. However, the causal interpretation of these models is not always clear, and they do not easily translate to settings where bounds, rather than point estimates, are computed.

METHODS

If bounds on an average causal effect of interest in a well-defined population are computed in multiple study populations under specified identifiability assumptions, then under those assumptions the average causal effect would lie within all study-specific bounds and thus the intersection of the study-specific bounds. We demonstrate this by pooling bounds on the average causal effect of prenatal alcohol exposure on attention deficit-hyperactivity disorder symptoms, computed in two European cohorts and under multiple sets of assumptions in Mendelian randomization (MR) analyses.

RESULTS

For all assumption sets considered, pooled bounds were wide and did not identify the direction of effect. The narrowest pooled bound computed implied the risk difference was between -4 and 34 percentage points.

CONCLUSIONS

All pooled bounds computed in our application covered the null, illustrating how strongly point estimates from prior MR studies of this effect rely on within-study homogeneity assumptions. We discuss how the interpretation of both pooled bounds and point estimation in MR is complicated by possible heterogeneity of effects across populations.

摘要

背景

研究人员通常使用随机效应或固定效应荟萃分析来合并来自多个研究人群的发现。然而,这些模型的因果解释并不总是清楚的,并且它们不容易转化为计算界限而不是点估计的环境。

方法

如果在明确定义的人群中计算感兴趣的平均因果效应的界限,并且在指定的可识别性假设下在多个研究人群中计算,则在这些假设下,平均因果效应将位于所有研究特定界限内,因此位于研究特定界限的交集内。我们通过在两个欧洲队列中计算并在孟德尔随机化 (MR) 分析中根据多组假设计算产前酒精暴露对注意缺陷多动障碍症状的平均因果效应的界限来证明这一点。

结果

对于所有考虑的假设集,汇总界限都很宽,并且无法确定效果的方向。计算出的最窄的汇总界限暗示风险差异在 -4 到 34 个百分点之间。

结论

我们应用中计算的所有汇总界限都包含零,这说明了该效应先前的 MR 研究中的点估计如何强烈依赖于研究内同质性假设。我们讨论了在 MR 中如何通过群体间效应的可能异质性来使汇总界限和点估计的解释复杂化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad23/9719801/493365eb2a10/ede-34-020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验