Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, México.
División de Mecatrónica, Subdirección de Posgrado e Investigación, Tecnológico Nacional de México Campus Zacapoaxtla, 73680, Zacapoaxtla, Puebla, México.
Chemphyschem. 2022 Dec 16;23(24):e202200310. doi: 10.1002/cphc.202200310. Epub 2022 Sep 6.
The interaction of α-glucose with a BN-nanosheet, BN-nanotube, and BN-fullerene, was analyzed from an atomistic and electronic point of view, to evaluate such nanostructures as possible carriers and/or biosensors of the α-glucose molecule. Adsorption energies are in the range of physisorption (-0.79 eV to -0.91 eV) for the BN-nanosheet and -nanotube, and chemisorption (-2.24 eV to -2.35 eV), for the BN-fullerene. All systems, exhibit semiconductor-like behavior and great stability according to |LUMO-HOMO| energy gap [Gap ] and chemical potential values, respectively. For the BN-nanosheet and -nanotube, the stabilization of the complexes is through hydrogen bonds, while for BN-fullerene is through a covalent bond and charge transfer. Furthermore, the BN-fullerene is able to dissociate the α-glucose molecule, which could help to decomposer such a compound, and be used for biological applications. The data taking into consideration solvent effects have no significant impact with respect to gas phase, except in the dipole moment (M ) where we noticed an increase up to ∼45 %. Our results suggest that BN-nanosheet and -nanotube, may act as biosensors, while BN-fullerene, may serve as a carrier or degrader of the α-glucose molecule.
从原子和电子的角度分析了α-葡萄糖与 BN-纳米片、BN-纳米管和 BN-富勒烯的相互作用,以评估这些纳米结构作为α-葡萄糖分子的可能载体和/或生物传感器。吸附能在 BN-纳米片和纳米管的范围内为物理吸附(-0.79 eV 至-0.91 eV),而 BN-富勒烯的吸附能为化学吸附(-2.24 eV 至-2.35 eV)。根据|LUMO-HOMO|能隙[Gap]和化学势值,所有系统均表现出半导体类似的行为和极大的稳定性。对于 BN-纳米片和纳米管,通过氢键稳定配合物,而对于 BN-富勒烯,则通过共价键和电荷转移稳定配合物。此外,BN-富勒烯能够使α-葡萄糖分子解离,这有助于分解这种化合物,并可用于生物应用。考虑溶剂效应的数据与气相相比没有显著影响,除了偶极矩(M),我们注意到它增加了约 45%。我们的结果表明,BN-纳米片和纳米管可能作为生物传感器,而 BN-富勒烯可能作为α-葡萄糖分子的载体或降解剂。