Suppr超能文献

利用 DFT-D3 修正色散和分子动力学模拟方法,解析作为异烟肼药物给药系统的蜂窝结构的性能。

Unravelling performance of honeycomb structures as drug delivery systems for the isoniazid drug using DFT-D3 correction dispersion and molecular dynamic simulations.

机构信息

Division of Carbon Neutrality & Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea.

Department of Chemistry, Faculty of Science Hamedan Branch, Islamic Azad University, Hamedan, Iran.

出版信息

Phys Chem Chem Phys. 2024 May 8;26(18):14018-14036. doi: 10.1039/d3cp05457h.

Abstract

In this study, the potential of aluminum nitride (h-AlN), boron nitride (h-BN) and silicon carbide (h-SiC) nanosheets as the drug delivery systems (DDS) of isoniazid (INH) was scrutinized through density functional theory (DFT) and molecular dynamic (MD) simulations. We performed DFT periodic calculations on the geometry and electronic features of nanosheets adsorbed with INH by the DFT functional (DZP/GGA-PBE) employed in the SIESTA code. In the energetically favorable model, an oxygen atom of the C-O group of the INH molecule interacts with a Si atom of the h-SiC at 2.077 Å with an interaction energy of -1.361 eV. Charge transfer (CT) calculation by employing the Mulliken, Hirshfeld and Voronoi approaches reveals that the monolayers and drug molecules act as donors and acceptors, respectively. The density of states (DOS) calculations indicate that the HOMO-LUMO energy gap (HLG) of the h-SiC nanosheet declines significantly from 2.543 to 1.492 eV upon the adsorption of the INH molecule, which causes an electrical conductivity increase and then produces an electrical signal. The signal is linked to the existence of INH, demonstrating that h-SiC may be an appropriate sensor for INH sensing. The decrease in HLG for the interaction of INH and h-SiC is the uppermost (up to 41%) representing the uppermost sensitivity, whereas the sensitivity trend is (h-SiC) > (h-AlN) > (h-BN). Quantum theory of atoms in molecules (QTAIM) investigations is employed to scrutinize the nature of the INH/nanosheet interactions. The QTAIM analysis reveals that the interaction of the INH molecule and h-SiC has a partially covalent nature, while INH/h-AlN model electrostatic interaction occurs in the system and noncovalent and electrostatic interaction for the INH/h-BN model. Finally, the state-of-the-art DFT-MD simulations utilized in this study can mimic ambient conditions. The results obtained from the MD simulation show that it takes more time to bond the INH drug and h-SiC, and the INH/h-SiC system becomes stable. The results of the current research demonstrate the potential of h-SiC as a suitable sensor and drug delivery platform for INH drugs to remedy tuberculosis.

摘要

在这项研究中,通过密度泛函理论(DFT)和分子动力学(MD)模拟,研究了氮化铝(h-AlN)、氮化硼(h-BN)和碳化硅(h-SiC)纳米片作为异烟肼(INH)药物输送系统(DDS)的潜力。我们使用 SIESTA 代码中的 DFT 功能(DZP/GGA-PBE)对吸附 INH 的纳米片的几何形状和电子特性进行了 DFT 周期计算。在能量有利的模型中,INH 分子的 C-O 基团中的一个氧原子与 h-SiC 的一个硅原子相互作用,距离为 2.077 Å,相互作用能为-1.361 eV。通过使用 Mulliken、Hirshfeld 和 Voronoi 方法进行的电荷转移(CT)计算表明,单层和药物分子分别作为供体和受体。态密度(DOS)计算表明,h-SiC 纳米片的 HOMO-LUMO 能隙(HLG)在吸附 INH 分子后从 2.543 显著下降至 1.492 eV,这导致电导率增加,从而产生电信号。该信号与 INH 的存在相关,表明 h-SiC 可能是 INH 传感的合适传感器。INH 与 h-SiC 相互作用的 HLG 下降最大(高达 41%),代表了最高的灵敏度,而灵敏度趋势为(h-SiC)>(h-AlN)>(h-BN)。原子在分子中的量子理论(QTAIM)研究用于研究 INH/纳米片相互作用的性质。QTAIM 分析表明,INH 分子与 h-SiC 的相互作用具有部分共价性质,而 INH/h-AlN 模型中的静电相互作用发生在系统中,而 INH/h-BN 模型中的非共价和静电相互作用。最后,本研究中使用的最先进的 DFT-MD 模拟可以模拟环境条件。MD 模拟的结果表明,将 INH 药物与 h-SiC 键合需要更多的时间,并且 INH/h-SiC 系统变得稳定。当前研究的结果表明,h-SiC 作为一种合适的传感器和异烟肼药物的药物输送平台具有潜力,可用于治疗结核病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验