Qadir Karwan Wasman, Mohammadi Mohsen Doust, Alosfur Firas K Mohamad, Abdullah Hewa Y
Department of Physics, College of Education, Salahaddin University-Erbil, 44002, Erbil, Kurdistan Region, Iraq.
Renewable Energy Technology Department, Erbil Technology College, Erbil Polytechnic University, 44001, Erbil, Kurdistan Region, Iraq.
J Mol Model. 2024 Dec 16;31(1):20. doi: 10.1007/s00894-024-06252-0.
This research investigates two critical areas, providing valuable insights into the properties and interactions of boron nitride nanotubes (BNNTs). Initially, a variety of BNNT structures (BNNT(m,n)_x, where m = 3, 5, 7; n = 0, 3, 5, 7; x = 3-9) with different lengths and diameters are explored to understand their electronic properties. The study then examines the interactions between these nanotubes and several gases (CO, CO, CSO, HO, NO, NO, NO, O, ONH, and SO) to identify the most stable molecular configurations using the bee colony algorithm for global optimization. The primary findings highlight the impact of nanotube diameter on these properties. It was observed that smaller diameters result in a larger energy gap due to increased quantum confinement. Significant charge transfer, especially with CO, was detected, affecting the electronic structure of the nanotubes. The study highlighted that BNNTs exhibit the strongest adsorption tendencies for NO₂, O₂, and SO₂. These findings underscore the critical roles of nanotube diameter and charge transfer in sensor applications and demonstrate the comprehensive utility of various analytical methods in understanding BNNT-gas interaction mechanisms.
The research employs a comprehensive computational framework based on density functional theory (DFT). Various DFT methods, such as PBE0, B3LYP(GD3BJ), CAM-B3LYP, HSE06i, M06-2X, and ωB97XD functionals, are utilized along with the Def2tzvp basis set for the calculations. Structural optimizations are performed to ensure accuracy, and modifications to the energy gaps are analyzed using conceptual DFT. Additionally, Total Density of States (TDOS) analyses are conducted. Charge transfer mechanisms are investigated through Natural Bond Orbital (NBO) analysis. The interactions between gases and nanotubes are characterized at critical points using the Quantum Theory of Atoms in Molecules (QTAIM) framework.
本研究调查了两个关键领域,为氮化硼纳米管(BNNTs)的性质和相互作用提供了有价值的见解。最初,研究了各种具有不同长度和直径的BNNT结构(BNNT(m,n)_x,其中m = 3、5、7;n = 0、3、5、7;x = 3 - 9),以了解它们的电子性质。然后,该研究考察了这些纳米管与几种气体(CO、CO、CSO、HO、NO、NO、NO、O、ONH和SO)之间的相互作用,使用蜂群算法进行全局优化以确定最稳定的分子构型。主要研究结果突出了纳米管直径对这些性质的影响。据观察,由于量子限制增加,较小的直径导致更大的能隙。检测到显著的电荷转移,特别是与CO之间的电荷转移,这影响了纳米管的电子结构。该研究强调,BNNTs对NO₂、O₂和SO₂表现出最强的吸附倾向。这些发现强调了纳米管直径和电荷转移在传感器应用中的关键作用,并证明了各种分析方法在理解BNNT - 气体相互作用机制方面的综合效用。
该研究采用了基于密度泛函理论(DFT)的综合计算框架。使用了各种DFT方法,如PBE0、B3LYP(GD3BJ)、CAM - B3LYP、HSE06i、M06 - 2X和ωB97XD泛函,并结合Def2tzvp基组进行计算。进行结构优化以确保准确性,并使用概念性DFT分析能隙的修正。此外,还进行了总态密度(TDOS)分析。通过自然键轨道(NBO)分析研究电荷转移机制。使用分子中的原子量子理论(QTAIM)框架在临界点表征气体与纳米管之间的相互作用。